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Hyperbolic space vs conformal round sphere

Let us consider Hyperbolic space as a symmetric space

SO↑(1, n + 1)/SO(n + 1) = Hn+1

and the conformal round sphere as the boundary at infinity of
Hn+1 and a homogeneous space of the parabolic geometry:

SO↑(1, n + 1)/H = Sn

where H is the group generated by rotations, scalings, and
inversions on the Euclidean space Rn. The identifications

SO↑(1, n + 1) ∼= Isom(Hn+1) ∼= Conf(Sn)

tell us how the Lorentz group acts on the hyperboloid in
Minkowski spacetime and how the isometry group acts on the space
of classes of equivalent geodesic rays in Hn+1.
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Hyperbolic space vs conformal round sphere

(Rn+2, g), g = −dx2
0 + |dx|2 + dx2

n+1

I Hyperboloid {(x0, x, xn+1)| − x2
0 + |x |2 + x2

n+1 = −1} which
is a orbit of SO(1, n + 1)

I Light cone {(x0, x, xn+1)| − x2
0 + |x |2 + x2

n+1 = 0} which is a
orbit of SO(1, n + 1)
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AHE manifold vs conformal infinity

(X n+1, g+) is said to be asymptotically hyperbolic (AH in short)
when (X n+1, g+) is conformally compact and, in addition, the
sectional curvature goes to −1 at infinity and AH can induce a
conformal structure on the boundary ∂X n+1 = Mn.

We like to impose the Einstein conditions

Ric[g+] = −ng+

to make the association

∂∞(X n+1, g+) = (Mn, [ĝ ])

possibly canonical, in which (X n+1, g+) is said to be asymptotically
hyperbolic Einstein (AHE in short).
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The stability of the AHE

Let (M, g+) be an AHE. We say that (M, g) is a stable AHE if for
any other AHE (M,g) satisfying that ‖g − g+‖ < ε (Different ‖.‖
will lead different stability), we always have

(M, g+) ∼= (M, g)
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Introduction of Ricci flow

I Ricci flow The Rici flow is the geometric evolution equation in
which one starts with a smooth Riemanian manifold (Mn, g0) and
evolves its metric by the equation there exists a smooth metric g in
M satisfying

∂

∂t
g = −2Rc

where Rc denotes the Ricci tensor of the metric g .
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Introduction of the Ricci flow (II)

I The normalized Ricci flow
d

dt
g(t) = −2

(
Ricg(t) + ng(t)

)
g(0) = g0

I The relation to Ricci flow

gN(t) = e−2ntg

(
1

2(n − 1)

(
e2nt − 1

))
I The relation to the Einstein manifold If the g(∞) exists,

then g(∞) is a Einstein metric with Ric(g(∞)) = −ng(∞)
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The relation between the stability of the AHE and the Ricci flow

In order to show the stability of one AHE (M, g+), it suffices to
show that for any ‖g − g+‖ < ε, the normalized Ricci flow

d

dt
g(t) = −2

(
Ricg(t) + ng(t)

)
g(0) = g

have long time existence satisfying that

g(t)→ g+ as t →∞
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Some important results

Theorem (R. Bamler 2015)

Let (M, g) be either Hn for n ≥ 3 or CH2n for n ≥ 2, choose a basepoint
x0 ∈ M and let r = d (·, x0) denote the radial distance function. There is
an ε1 > 0 and for every q <∞ an ε2 = ε2(q) > 0 such that the
following holds: If g0 = g + h and h = h1 + h2 satisfies

|h1| <
ε1

r + 1
and sup

M
|h2|+

(∫
M

|h2|q dx
)1/q

< ε2.

Then the normalized Ricci flow exists for all time and we convergence
gt −→ g in the pointed Cheeger-Gromov sense.
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Some important results

Theorem (J.Qing and S)

Let (Mn+1, g+) be an asymptotically hyperbolic Einstein manifolds
with nondegeneracy λ > 0 and regularity C 2,α and (Mn+1, g) be
another asymptotically hyperbolic Einstein manifolds. Then, for any
δ ∈ (0, n), there exists ε0(λ) > 0, such that if
|g − g+| ≤ ε0e−δd(x0,x), Then the Ricci DeTurck flow with the
initial g has the long time existence and

lim
t→∞

|g − g+|0,0,δ = 0
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Our goal

Theorem (Our Goal)

Let M = Bn+1 be a ball wiht n ≥ 3 and ĥ the standard metric on
the sphere Sn and gH be the standard hyperbolic metric on Bn+1.
For any asymptotically hyperbolic Einstein manifold (M, g) with
nonpositive sectional curvature and a defining function ρ such that
ĝ = ρ2g |∂M is sufficiently close to ĥ in C 2,α norm, for some
0 < α < 1 and g is sufficiently close to gH in the sense of C 0. And
choose a basepoint x0 ∈ M and let r = d(., x0) denote the radial
distance function. There is an ε > 0 such that the following holds:
If g0 = g + h satisfies

|h| < ε

r + 1
then the normalized Ricci flow exists for all time and we have
convergence gt → g in the pointed Cheeger-Gromov sense.
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Short time existence

Theorem (Shi 1989)

Let (M, gij(x)) be an n -dimensional complete noncompact
Riemannian manifold with its Riemannian curvature tensor {Rijkl}
satisfying

|Rijkl |2 ≤ k0 on M

where 0 < k0 < +∞ is a constant. Then there exists a constant
T (n, k0) > 0 depending only on n and k0 such that the evolution
equation

∂
∂t gij(x , t) = −2Rij(x , t) on M

gij(x , 0) = gij(x) ∀x ∈ M

has a smooth solution gij(x , t) > 0 for a short time
0 ≤ t ≤ T (n, k0) ,.
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The Long time existence of the Ricci flow

The following metric flow is called the normalized Ricci-DeTurck
flow

∂

∂t
gij = −2Rij(g(t)) +∇iWj +∇jWi − 2ngij

where Wj = g ll1gjk(Γk
ll1

(g(t))− Γk
ll1

(g+)) and ∇ is the covariant
derivative with respect to g(t).

Moreover, there exists a 1-parameter family of maps ϕt : M → M
satisfying that

∂

∂t
ϕt(p) = −W (ϕt , t) ϕ0 = id

such that g̃(t) := ϕ∗t (g(t)) is a solution a the normalized Ricci
flow.
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Linearization

I The Linearization of normalized Ricci-deTurk flow
hij(t, x) = gij(t, x)− g+ij(x). Then the Ricci-DeTurck flow is
equivalent to the following flow

∂

∂t
hij =∆̃hij − 2R̃jlil2h

ll2 − R̃il2h
l2
j + R̃jl2h

l2
i − 2nhij

− 2(R̃ij + ng̃ij) + Qij(t, x)

where ∆̃, R̃ is respect to g̃ij = g+ij and

Qij(t, x) = g̃ ∗ g̃−1 ∗ ∇̃h ∗ ∇̃h + g̃ ∗ g̃−1 ∗ ∇̃2h ∗ h

I The long time existence depends on the estimate of the heat
kernel.
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The heat kernel estimate

In order to show our goal, we need the estimates for heat kernel

∂tkt = ∆kt + R(kt) and kt → δp0 idEp0
as t → 0 (1)

where (kt)0<t<T ∈ C∞(M;E )⊗ Ep0 and E = Sym2T ∗M and
R(h)il = −2R̃jlil2h

ll2 − R̃il2h
l2
j + R̃jl2h

l2
i . Following the method of

R.Bamler, we see that it is sufficient to show that

‖kt‖L1(M) ≤ C ‖kt‖L2(M) ≤ C exp (λBt) for t > 0
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The heat kernel estimate(II)

In the light of the result of Davies and Mandouvalos, we can show
if we have the following heat kernel estimate

|kt | ≤ t−(n+1)/2 exp

(
−n2t

4
− r2

4t
− nr

2

)
· (1 + r + t)n/2−1(1 + r),

Then we have

‖kt‖L1(M) ≤ C ‖kt‖L2(M) ≤ C exp (λBt) for t > 0.
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An important result

Theorem (X.Chen and A.Hassell 2017)

Let (M, g) be an (n + 1) dimensional asymptotically hyperbolic
Cartan-Hadamard manifold with no eigenvalues and no resonance at
the bottom of the spectrum. Let k (t, z , z ′) be the heat kernel on
(M, g). Then k (t, z , z ′) is equivalent to the Davies-Mandouvalos
quantity, i.e. bounded above and below by multiples of

t−(n+1)/2 exp

(
−n2t

4
− r2

4t
− nr

2

)
· (1 + r + t)n/2−1(1 + r)

uniformly over all times t ∈ (0,∞) and distances
r = d (z , z ′) ∈ (0,∞).
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The idea of X.Chen and A.Hassell

The realtion between the heat operator and resolvent. In order to
find the heat kernel it suffices to make sense e−∆t . Let A be a
self-adjoint operator on H. And let h : R→ C bounded and
continuous. Then, we can define

h(A) =

∫
R
h(λ)dP(λ)

where dP(λ) is the spectrum measure of the operator A.
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(II)

Theorem (Stone)

The spectral projectors associated with a self-adjoint operator A are
expressed in terms of the resolvent by,

1
2
(
P[α,β] + P(α,β)

)
=

∫ β

α
dΠ(λ)

where dΠ is the spectrum measure.
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(III)

Now, Let (Mn+1, g) be an asymptotically hyperbolic manifold. If A
is a operator on Sym2(T ∗M) with all its spectrum in [n

2

4 ,∞) and
no eigenvalue at n2

4 . Then, consider the operator B = A− n2

4 . And
take h(x) = e−tx . Then consider the following operator

h(B) = lim
ε→0

∫ ∞
−∞

h(λ)dΠ(λ) = lim
ε→0

∫ ∞
0

e−tλdΠ(λ)

where

dΠ(λ) :=
1
2πi

lim
ε→0

[
(B − λ− iε)−1 − (B − λ+ iε)−1] dλ
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(IV)

Let λ = s2 and s = a + bi

dΠ
(
a2) = dΠ

(
Re
(
s2)) =

1
2πi

lim
b→0

[(
B − s2)−1 −

(
B − s̄2)−1

]
2ada

dΠ
(
a2) =

1
2πi

lim
b→0

[R(s)− R(s̄)] 2ada =
1
2πi

lim
b→0

[R(a + bi)− R(a− bi)] 2ada

where R(s) = (B − s2)−1. We have have that

h(B) = lim
b→0+

− 1
2πi

∫ ∞
−∞

e−ta
2

[R(a− bi)] 2ada
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(V)

Therefore,

h(A) =h(B +
n2

4
) = lim

ε→0

∫ ∞
0

e−t(λ+ n2
4 )dΠ(λ)

= lim
ε→0

e−t
n2
4

∫ ∞
0

e−tλdΠ(λ) = e−t
n2
4 h(B)

=e
−n2
4 t lim

b→0+
− 1
2πi

∫ ∞
−∞

e−ta
2

[R(a− bi)] 2ada

Moreover, we can show that

d

dt
h(A)(u) = Ah(A)u
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(VI)

The result of X. Chen and A. Hassell relies on the following result

Theorem (R.Melrose, A.Sa Barreto and A.Vasy 2014)

Assume that (X , g) is an asymptotically hyperbolic
Cartan-Hadamard manifold with no eigenvalues and no resonance
at the bottom of the spectrum. Let r denote geodesic distance on
X × X . Then the resolvent, R(λ) :=

(
∆X − n2/4− λ2)−1 is

analytic in a neighbourhood of the closed lower half plane Imλ ≤ 0,
and satisfies in this region of the λ -plane and for r(1 + |λ|) ≥ 1.

R(λ)
(
z , z ′

)
= e−iλrRod(λ)

(
z , z ′

)
, r = d

(
z , z ′

)
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(VII)

Theorem (R.Melrose, A.Sa Barreto and A.Vasy 2014)

In particular, Rod(λ) is a kernel bounded pointwise by a multiple of
(r(1 + |λ|))n/2−1r−n+1 = r−n/2(1 + |λ|)n/2−1 for r ≤ C , and,
e−nr/2(1 + |λ|)n/2−1 for r ≥ C .
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(VIII)
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(Cheng-Li-Yau)

Theorem (Cheng-Li-Yau)

Let M be a complete non-compact Riemannian manifold whose
sectional curvature is bounded from below and above. For any
constant C > 4, there exists C1 depending on C ,T , z ∈ M, the
bounds of the curvature of M so that for all t ∈ [0,T ] the heat
kernel H (t, z , z ′) obeys

h
(
t, r(z , z ′)

)
≤ C1(C ,T , z)∣∣∣B√t(z)

∣∣∣ exp

(
− r2 (z , z ′)

Ct

)

where r (z , z ′) is the geodesic distance on M.
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Cheng-Li-Yau

Form the above theorem, we see that in our asymptotically
hyperbolic manifold (X n+1, g+), its heat kernel, in this region, has
the following estimate

h(t, r(z , z ′)) ≤ C

t
n+1
2
≤ hHn+1(t, r)

where

hHn+1(t, r) ∼ 1

t
n+1
2
e−

n2
4 te−

nr
2 e

r2
4t (1 + r + t)

n
2−1(1 + r)
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Region (6)

Theorem (X.Chen and A.Hassell 2016)

Suppose (X , g) is an n + 1 -dimensional asymptotically hyperbolic
CartanHadamard manifold with no resonance at the bottom of the
continuous spectrum and denote the operator

√
(∆X − n2/4)+ by

P. The Schwartz kernel of the spectral measure dEP(λ) satisfies
bounds ∣∣dEP(λ)

(
z , z ′

)∣∣ ≤ { Cλ2, if λ ≤ 1
Cλn if λ ≥ 1
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Thank you for your time!
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