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Normalized Ricci flow on asymptotically
hyperbolic manifolds
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In this paper, we investigate the behavior of the normalized

Ricci flow on asymptotically hyperbolic manifolds. We show that the normal-
ized Ricci flow exists globally and converges to an Einstein metric when starting
from a non-degenerate and sufficiently Ricci pinched metric. More importantly,
motivated by [QSW2013] [Ba2015], we also establish the regularity of conformal
compactness of the normalized Ricci flow towards time infinity. Therefore we
are able to fully recover the existence results in [GL1991] [Le2006] [Bil999] of
conformally compact Einstein metrics with conformal infinities thich are per-
turbation of that of given non-degenerate conformally compact Einstein.
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1 Introduction

Since the seminal work of Fefferman and Graham [FG1985] there have been
great interests in the study of conformally compact Einstein metrics. Lately the
use of conformally compact Einstein manifolds in the so-called AdS/CFT corre-
spondence in string theory proposed as a promising quantum theory of gravity
have accelerated developments of the study of conformally compact Einstein
manifolds. As it was foreseen in [FG1985], the study of conformally compact
Einstein manifolds now becomes one of the most active research area in con-
formal geometry. But the existence of conformally compact Einstein metrics
remains to be a challenging open problem in large.

In this paper we study the normalized Ricci flows on asymptotically hyper-
bolic manifolds and use normalized Ricci flows to construct conformally com-
pact Einstein metrics. We recall that Ricci flow starting from a metric go on a
manifold M™ is a family of metrics g(t) that satisfies the following:

%g(ﬁ) =-2 Rng(t)

g (0) =90
We then consider the normalized Ricci flow as follows:

d

Z9(t) = =2 (Ricy( +ng (1))

It is easily seen that the above two equations are equivalent. In fact explicitly

gV (t) =e g (;n (e — 1)>

solves the second equation if and only if g(t) solves the first equation.

Naturally one initial step is to study normalized Ricci flows starting from
metrics that are close to be Einstein. Such questions on compact manifolds were
studied in [Ye1993], where it was observed that the normalized Ricci flow exists
globally and converges exponentially to an Einstein metric if the initial metric
go is sufficiently Ricci pinched and is non-degenerate. There are also several
works in the non-compact cases. In [LY2010], the stability of the hyperbolic
space under the normalized Ricci flow was established. This stability result on



the hyperbolic space in [LY2010] later is improved and extended in [Ba2015]
[Ba2014] [SSS2010] [Su2009)].

To be more precise we say a metric g on a manifold M" is e-Einstein if
[[hgll < €

on M", where the Ricci pinching curvature hy = Ricy + (n — 1)g. The non-
degeneracy of a metric is defined to be the first L? eigenvalue of the linearization
of the curavture tensor h as follows:

g I (B £ 2(n — 1)) wiy, uig)
A=inf IMCE

where the infimum is taken among symmetric 2-tensors u such that

/ (IVul® + |u|?) dv < o0
M
and Ay is Lichnerowicz Laplacian on symmetric 2-tensors.

We first, based on the ideas in [Ye1993] [Ba2015], obtain the following global
existence and convergence theorem of the normalized Ricci flow on non-compact
manifolds. The reason that we consider the curvature flow is that this flow is
strictly elliptic flow which is easier than directly considering the Ricci DeTurck
flow. In the setting of Ricci DeTurck flow, we still need to consider the long
time existence and convergence of harmonic map flow.

Theorem 1.1 Let (M"* g.) be an asymptotically hyperbolic manifolds with
nondegeneracy A > 0, regularity C*® and n > 4. Then, for any 6 € (0,n),
there exists eg(A, k1) > 0 such that if |hlo,0.6.m < €0, the solution of the nor-
malized Ricci flow g(t,z) has long time existence and g(t,z) converges to an
Einstein manifold in the sense of C3 morm. Moreover, the limit metric is an
Asymptotically hyperboli Finstein metric with the same conformal infinity.

The theorem 1.1 actually is a generalization of the theorem 4.1 in [QSW2013].
In [QSW2013], they require the weight ¢ satisfied the following

n . n2 n n2

In this paper, we only require that
n n? n n?
) — =/, = — | = (0,
E<2 V3 2+\/4> (0.n)

The reason that we can modified the term \/%2 — 2 into 1/{ is that we use

a more precise isomorphism theorem of Laplacian operator on weighted space



(Theorem C [Le2006]) instead of the maximal principal for L? norm of h.

Moreover, once we have the long time existence and convergence of normal-
ized Ricci flow, we can derive the following stability theorem of asymptotically
hyperbolic manifolds.

Theorem 1.2 Let (M™ g,) be an asymptotically hyperbolic Einstein mani-
folds with nondegeneracy A > 0, reqularity C*>* and n > 4. Let g be another
asymptotically hyperbolic metric on M"*+1. Then, for any 6 € (0,n), there ex-
ists eo(\) > 0, such that if |g — g | < eoe™%4@0®)  Then the Ricci DeTurck flow
with the initial g has the long time existence and

tlim |9 — 9+l0,05 =0
— 00

For the stability result of hyperbolic space M™*+! = H"*+!, Schulze, Schnurer
and Simon ([SSS2010]) have shown stability of n > 3 for every perturbation
|g — gun+1| is bounded by a small constant depending on ||g — ggn-+1]|z2-

While Li and Yin ([LY2010]) have shown a stability result of n > 2 for the
Riemannian curvature approaches the hyperbolic curvature like 61(5)6_“(”0@)

Furthermore, Bamler ([Ba2015]) have shown stability of n > 2 for the per-
turbation |g — ggn+1| = hy + ho for which

€1

1

q
hl< —3  and ho| + / hol? )" <
|1|*d(x0,x)+1 an SAqu|2| (Mz) <eé

for every ¢ < oo.
It easy to see that the stability result of [Ba2015] just implies that the sta-
bility result of [SSS2010].

For the theorem 1.2, if we take g, is the standard hyperbolic metric, then
this stability result is implied by the stability result of [Ba2015].

By the theorem 1.1, we can fully recover the perturbation existence results in
[GL1991] [Le2006] [Bi1999]. The idea is to construct an asymptotically hyper-
bolic metric with prescribed boundary which satisfying the condition of theorem
1.1. Then we apply the theorem 1.1 to get the asymptotically hyperbolic Ein-
stein metric with this boundary.

Theorem 1.3 Let (M™,g4), be a conformally compact Einstein manifold of
regularity C? with a smooth conformal infinity (OM, [§]). And suppose that the
non-degeneracy of g satisfies

A>0

Then, for any smooth metric h on OM , which is sufficiently C*® close to some
g € [g] for any o € (0,1), there is a conformally compact Einstein metric on M
which is of C? regularity and with the conformal infinity [h)



Our paper is organized as follows: In section 2.1, we first introduce the
normalized Ricci flow and its curvature flow which is to prove the long time
existence and convergence of normalized Ricci flow. Then we introduce the
Ricci DeTurck flow and its linearization which is to show the stability result
of theorem 1.2. In section 2.2, we introduce some basic concepts of asymptot-
icallly hyperbolic manifolds and Mobius chart which are important to do the
parabolic estimate on the asymptotically hyperbolic manifolds. In section 2.3,
we just introduce the interior parabolic estimate on weighted space (The cor-
responding elliptic estimate can be seen in Lemma 4.8 of [Le2006]). In section
2.4, we just generalized the result short time existence of Ricci flow [Shil989]
and [Mi2002] into the weighted space that is to say the Ricci flow preserve the
decay of metric for a short time. The idea is from Lemma 4.3 in [QSW2013]
which is a generalized maximal principal (Lemma 4.2 in [QSW2013]). In sec-
tion 2.5, we use the Hille-Yosida thoerem about semigroup to show that the
isomorphism theorem [GL1991] [Bi1999] is equivalent to the exponential decay
of the heat kernel of the linear heat equation. In section 3, we make use of
the method of [Ba2015] plus a little tricky linearization method to get the long
time existence and convergence of the normalized Ricci flow. In the section 4,
we recall the metric expansions in [FG1985] for conformally compact Einstein
metric and apply normalized Ricci flows to reproduce perturbation existence
results in [GL1991] [QSW2013] [Bi1999].

2 Preliminary

In this section, we will review some basic result of normalized Ricci flow and
parabolic equation on asymptotically hyperbolic manifolds.

2.1 Curvature flow and Ricci DeTurck flow and its lin-
earizations

Let g(t) be a family of metrics on the same manifolds M"+! satisfying the
normalized Ricci flow

0

5;9(0) = =2 (Ricy) +ng(1))

Let h(t) = Ricy) +ng(t). Then, we can get the evolution equation of h(t) as
following

0
= hy = Aphy — 2nh;
ot l L1tg] Ny

where Ay, is the Lichnerowicz Laplacian operator defining as following

Aphip = Ahy — g™ Rijhy,i — ¢ Rijhyy + 297" g7 Ryiyiih, i,



Moreover, we can also write the above as

0
ahil = Ar(g—1)hi — 2nhi +Q

where
Q =[AL(gt)) = Ar(g(-1)lhil
=g(t) * g(t — 1) = [Vg(t) =
+g(t) = gt — 1)« [Vg(t)

g(t) + g(t) * (V2g(t) + R(g(t — ))] * h
] % Vh

where V is with respect to g(t — ).

The following metric flow is called the normalized Ricci-DeTurck flow

0% = —2R;i;(g(t)) + ViW; + V;W; —2(n — 1)g;;

where W; = g' g (T (9(t)) — T}y (9(0))) and V is the covariant derivative
with respect to g(t).

Linearization : Let h;;(t,z) = g;;(t,2) — ¢i;(0,2). Then the Ricci-
DeTurck flow is equivalent to the following flow
0 .

ahzj = Aphij —2(n — Dhij — 2(Rij + (n — 1)gij) + Qi;(t, )
where A7 and R are the Lichnerowicz Laplacian operator and Ricci curvature
with respect to g(0) = § and the high order term @ is

Qijlta) = gx g ¥ g g« Vhx Vh+gu g™ xgx g~ « V2hh

For details of the computation, see the appendix.

2.2 Asymptotically hyperbolic manifolds and its Mobius
charts

In this section, we will introduce the asymptotically hyperbolic manifolds and
Mobius chart. In the Mobius chart of asymptotically hyperbolic manifolds, the
metric can be uniformly bounded (See Lemma 2.1) and approaching the stan-
dard hyperbolic metric as approaching the boundary. Therefore, we can get a
pretty good globally elliptic and parabolic estimate. Most content of this sec-
tion is from [Le2006].



2.2.1 Asymptotically hyperbolic manifolds

In order to define the asymptotically hyperbolic manifolds, we need to first
introduce the conformally compact manifold. Defining function is the key in
these concepts.

Definition 2.1 (Defining function) Let M be a smooth, compact, (n + 1)
-dimensional manifold-with-boundary, n > 1, and M its interior. A defining
function will mean a function p : M — R of class at least C' that is positive in
M, vanishes on OM, and has nonvanishing differential everywhere on OM.

Definition 2.2 (Conformal compactness) A Riemannian metric g on M
is said to be conformally compact of class CYP for a nonnegative integer | and
0 < B < 1 if for any smooth defining function p, the conformally rescaled metric
p%g has a CYP extension, denoted by g, to a positive definite tensor field on M.

Remark 2.1 For such a metric g, the induced boundary metric § == Glrons
is a C“# Riemannian metric on OM whose conformal class [g] is independent
of the choice of smooth defining function p; this conformal class is called the
conformal infinity of g.

Definition 2.3 (Asymptotically hyperbolic manifolds) Ifg is conformally
compact of class CHP with 1 > 2, and ldp|2 = 1 on OM, we say g is asymp-
totically hyperbolic of class C* and the corresponding manifold is called
asymptotically hyperbolic manifold.

We begin by choosing a covering of a neighborhood of OM in M by finitely
many smooth coordinate charts (€2, 0), where each coordinate map © is of
the form © = (6,p) = (917 . ,Gn,p) and extends to a neighborhood of € in
M. Throughout this monograph, we will use the Einstein summation conven-
tion, with Roman indices i, j, k, ... running from 1 to n + 1 and Greek indices
@, 3,7, ... running from 1 to n. Therefore, we can write (6*,...,6",p) as ¢° if
we think of p as #7 11

We fix once and for all finitely many such charts covering a neighborhood
W of OM in M. We will call any of these charts "background coordinates”
for M. Take a local background coordinate (6, p). Define H.(p) as the following
set
A
Ze(p) ={(0,p) : 10 = 0(p)| <¢,0<p<c}

And define the set A, as following

A2 {p € W : Fbackgroud local coordinate chart (U, ") such that Z.(p) C U}

We see that for ¢; < ¢q, we have A., C A.,. And by the compactness M, there
exist co such that A., forms a neighborhood of OM. Now, we will define the
Mobius charts based on these background coordinates and the standard coordi-
nate of hyperbolic space.



In the upper half-space model, we regard hyperbolic space as the open upper
half-space

H=H"2 {(z*,--- 2" y) CR"™y >0}
endowed with the hyperbolic metric § = y—2 > (dsci)2 .

For any r > 0, we let B, C H denote the hyperbolic geodesic ball of radius
r about the point(z,y) = (0,1)

B, = {(z,y) cH: dg((l‘,y), (Oa 1)) < 7”}

Then
B, C{(z,y): |z| <sinhr,e™" <y <e"}

where |x| denotes the Euclidean norm of z € R™.
If po is any point in A, /g, choose such a background chart containing po,

and {(0,p) : |6 —0(po)| < cv,0 < p < ¢o} and define a map @, : By — M,
called a Mdobius chart centered at pg, by

(0, p) = p, (2,y) = (B0 + po; poy)
where (6o, po) are the background coordinates of pg. Therefore, we see that
|6 — 6| < pox < posinh(2) <dpy  p < poe® < 8po
Since po € Acy/8, po < co/8. Therefore,
®(B2) C {(0,p) 10 —0(p)| < 0,0 < p <co}

is still contained in the same background local coordinate.

We also choose finitely many smooth coordinate charts ®; : Bo — M such
that the sets {®; (Bz)} cover a neighborhood of M\A. /s, For consistency,

we will also call these “Mobius charts.” Therefore, we have a Mobius charts
covering

{®:(B2), (I)i}zj‘vzl U {q)po (B2), (I);DU}POGACO/S
For simplicity, we just write is as
{¢Pi (BQ)v (I)pi }pieM
where @,,(0,1) = p;.

The following lemma shows the uniformly bounded of the Mobius coordinate.

Lemma 2.1 (Lemma 2.1 [Le2006]) There exists a constant C > 0 such that
if ®p, : Ba = M is any y, Mobius chart,

09~ chz,ﬂ(Bz) <C

(@5,9) gl <C

|5

sup
B2



(The Hélder and sup norms in this estimate are the usual norms applied to the
components of a tensor in coordinates; since By is compact, these are equivalent
to the intrinsic Holder and sup norms on tensors with respect to the hyperbolic
metric.

2.2.2 Weighted Holder spaces

In this section, we will define the weighted Holder space on the asymptotically
hyperbolic manifolds by the Mobius coordinate. Most of the content of this
section is from [Le2006].

Throughout this section, we assume M is a connected smooth (n + 1) -
manifold, ¢ is a metric on M that is asymptotically hyperbolic of class C*#,
with { > 2 and 0 < 8 < 1, and p is a fixed smooth defining function for M. (It
is easy to verify that choosing another smooth defining function will replace the
norms we define below by equivalent ones, and will leave the function spaces
unchanged.)

A geometric tensor bundle over M is a subbundle E of some tensor bun-

dle T} M ( tensors of covariant rank 71 and contravariant rank 73) associated to
a direct summand (not necessarily irreducible) of the standard representation of

O(n+1) (or SO(n+1) if M is oriented ) on tensors of type ( ::1 ) over R*+1,
2

We will also use the same symbol E to denote the restriction of this bundle to
M.

Definition 2.4 (Holder space) Let (M™L, g) be an asymptotically hyperbolic
manifold with boundary reqularity C%, 1> 2. Let a be a real number such that
0 <a<1, and let k be a nonnegative integer such that k + « <1+ 3. For any
tensor field u with locally C** coefficients, define the norm ||ul|x.q by

= 500 [l e,

where ||v||cr.o(py) 8 just the usual Buclidean Holder norm of the components
of v on By C H, and the supremum is over all Mobius charts defined on Bs.
Let C%<(M; E) be the space of sections of E for which this norm is finite. This
space is called Holder space.

Definition 2.5 (Weighted Holder spaces) The Weighted Holder spaces
are defined for 6 € R by

Cy*(M; E) = p°C**(M; E) = {p’u : uw € C**(M; E)}
with norms

ullk,as = [0~ ull o

Remark 2.2 If U C M is a subset, the restricted norms are denoted by | -
lk,a,6:0, and the space C’?“(U;E) are the spaces of sections over U for which
these norms are finite.



The following lemma just show that the above Holder norm actually is equiv-
alent to the usual intrinsic C* norm > .., sup,, |[Viu| for 0 < k <.

Lemma 2.2 (Lemma 3.4 [Le2006]) Let (M"*1, g) be an asymptotically hy-
perbolic manifold with boundary regularity CHP, 1 > 2. Let u be a locally inte-
grable section of a tensor bundle E over an open subsetU C M If0 < a < 1 and
O<k+a<l+Buc C’?’Q(U;E) if and only if p=°Viu € CO* (U; EQ TM)
for 0 < j <k, and the C’?’O‘ norm is equivalent to

> sup[p7 0Vl + [0 Vo
0<j<k

Given a Mobius charts {®,,(B2), ®p, }p,em, we will see the transition func-
tion and its derivative is uniformly bounded.

Lemma 2.3 Let (M™!, g) be an asymptotically hyperbolic manifold with bound-
ary reqularity C4%, 1 > 2. Given a Mobius charts covering {®,,(Ba), ®p, }p.cn,
there exists a constant C' such that

1@,,! 0 @y llcrswy < C
where U = By — &2 1(®,(Ba) N @y, (Ba)).
Proof : The transition map can be written down as

Byl 0By, B (B, (Bo) Ny, (B)) = ;1 (@, (B2) N Py, (B))

Pj Pi T pj
X—Yy

where x,y € By C H"™!. We can thought this as

o, od, :T(UTM)—T(UTM)

Where I'(U, T'M) is the section of the tangent bundle on U. Then we have
n+1 )
o, l0d, = 5y Qdrt e TM T M

t=1

Moreover
||<I>;jlo<1)pi|| =k+1 and VCI);jloq)m =0

By Lemma 2.2, we have

1@,,! 0 @y llctswy < C

10



Lemma 2.4 (Lemma 3.5 [Le2006]) Let (M"*1, g) be an asymptotically hy-
perbolic manifold with boundary reqularity CHP, 1 > 2. Let u be a global section
of a tensor bundle E and u € C’f’a(M;E) with0 <a<land0 < k+a <I+8.
Fiz arbitrary 0 < e < 2. Suppose that {®p,(B2), ®p,} is a Mobius charts cover-
ing of M satisfying that

Up, @y, (Br) =M  for arbitrary e <r <2

Then we have the following norm equivalence

_ —6 * —d *
Csupp (pi) 195 ully 05, < lullkas < Csupp (pi)~° [®Fully o, -
1 K2

Proof : Then first inequality is obvious. Because the ||.||x,q,5 is defined in the
Mobius chart in Bs. For the second inequality, we can make use of Lemma 2.2
to show it. In fact, we only need to show that

195, ulloro(By) < Csup [|@, ullcr.e(s,)
J

Consider all the p; such that ®,, (Bs) N ®, (B,) # 0. Then from lemma 2.2, we
have
19, 0 P llcrsw,) <C

where Uj = By — @, 1(®,, (Bz) N @, (B,)). Then

|15, v

<|

lcra(By) < 1P, ulloras,) + 1P, ullora (B, —B,)

@;i’u”ck,a(Br) + S;)]p ||(I>;Jl o®,, ||Ck,r:v(Uj) X ||(I>;ju||ck,n(3p)
3

2.3 Interior parabolic estimates

In this section, we will give the parabolic estimate in the weighted space which
is just same with the weighted holder space in previous section except there is
an extra time dimension. First, we will define the Holder norm and introduce
the local parabolic estimate. Then, we will define the weighted Holder norm in
asymptotically hyperbolic space and give the proof of the parabolic estimate in
this weighted space via Mobius chart. This idea is from [Le2006]. In [Le2006]
lemma 4.8, John Lee generalize the elliptic estimates into the weighted space by
taking the Mobius chart.

2.3.1 The general parabolic estimate

Most parts of this subsection can be found in chapter 8 of [Kr1996]. In R™+1+1
define the parabolic distance between the points z; = (¢1,1), 22 = (t2, 22)
as

p(21,22) = |71 — T2| + |t1 — 7f2|1/2

11



Definition 2.6 (Holder Norm) If u is a function in a domain Q C R*T1+1
we denote

o G0 —u ()l _
Waze = sup HZEE I fulaane = luloq + [ee

where o € (0, %)
By C*2%(Q) we denote the space of all functions u for which |u|s,20.0 < 0.
We also introduce the parabolic Holder space C'+®:2+29(QQ) as the set of all

real-valued function u(z) defined in @ for which both

[Wm+a,2m+205q = Z ( [Dlafu]op;cg + [Dlafu}a’za@) < o0
|l+2k|=2m

ul14a/2,240:0 = Z ([D'0yu] 0,0:@ T [Dlafu]a,m:Q) < o0
|l+2k|<2m

Let Q. (p) = B.(p) x [t — r?,,t]. Then set
‘u|;n+o¢,2m+2a;Qr = Z r‘l|+2k (|Dlafu|0,0;Qr + ,],,2a [Dlﬁfu] a,2a;Q,«)
[l|+2k<2m

where ¢ runs over products of spatial derivatives. Set B, = B,.(0) C R™.

Lemma 2.5 Let Q. = B.(p) x [t — r%,t] and Q2 = Ba.(p) x [t — 4r2,t] and
u e CHo2t2e (Q,,), a € (0,1) satisfying that (8; — L)yu = f where

Lu = a;; (x)(?fju + b;(z)Ou + c(x)u

1 ! l
such that A < Qij < Af |aij|m71+a,2mf2+2a;Q2r < A’ ‘bi|m71+a,2m72+2a;Q2,. <
rT A and ()], 14 g om—2420:0,, < T °A. Then, we have

|u|/m+o¢,2m+2a;Qr < C(r2|f|;n—1+o¢,2m—2+2a;Q2r + |u|070;Q27‘)
where C' depends only on A, m, a, n

Proof For m = 1, the Lemma is exactly the same as Theorem 8.11.1 in
[Kr1996] and for m > 1 it follows by differentiation. O

We notice that in the Lemma 2.5 we need to require that ¢ — 2 > 0 which
implies that ¢ — r2 > 0. Therefore, the parabolic neighborhood @, can not
be taken from the initial time. In order to make the local estimate can be
taken the initial time, we need to do an extension of the solution u(t,z) from
t €[0,T) tot € (—=C,T) where C > 0. By this way, if we take ¢t = 72, then
Qr(pv T2) = Br(p) X [Ov TQ] and Q27"(pa T2) = B27"(p) X [737”27 T2]' Then apply the

12



above theorem at ¢t = 0.

Next, we are going to generalized lemma 2.5 into the weighted space on
asymptotically hyperbolic space. Let M be a connected smooth (n+1)-manifold,
g is a metric on M that is asymptotically hyperbolic of class C*#, with [ > 2
and 0 < 8 <1 and p is a fixed smooth defining function for OM. Let E be a
geometric tensor bundle on M x R. Let (®,(B2), ®,) be the Mobius covering
of M. For any tensor field u with locally C™+®2m+2a coefficients, define the
norm |U|m+a,2m+2o¢ by

[t mta,2m+20 = sgp || cmta2mt2a( By xR)

where |®* U+, 2m+20; B, xRk 18 just the usual Euclidean Holder norm of the com-
ponents of v on By C H, and the supremum is over all Mobius charts defined
on By. Let C™mte:2m+2a(\[ x R, E) be the space of sections of E for which this
norm is finite.

The weighted Holder space on R"*! x R is defined as

an+a72m+2a(M % R; E) ::p50m+a,2m+2a(M X R; E)
={pou:ue CmTeImT(\ x R; E)}
with norm
U|lm+a,2m+2a,6 = P_ Ulm~+a,2m+2a
|ul 0™l

Remark 2.3 If U C M x R is a subset, the restricted norms are denoted by

Jmta.2mt2aq.6:0 and the space ’ , E) are the spaces of section over
ta2mi2a,s: and th Oty E) are th ti

U for which these norms are finite.

2.3.2 The parabolic estimate on weighted space

Lemma 2.6 Let (M"+, g.) be an asymptotically hyperbolic manifold with C*
regularity. For the heat equation

0

= BrgoutS

where u is a smooth section of symmetric two tensor on M and is also a solution
of the above equation for t € (n,T]. Then, we have the following estimate

|u|m+a,2m+2a,6;M><(77,T] < C(|f|m71+a,2m72+2a,6;M><(n,T] + |u|0,0,6;M><(n,T])

where C = C(g4,n, m,a,0).

Moreover, if there is another asymptotically hyperbolic metric g satisfying
that

|9 — g+l2,0m <€

13



Then for the equation

0
ot = ALeutf
its solution u also satisfies the following parabolic estimate

|u|m+a,2m+2a,6;M><(n,T] S C(|f|m—1+a,2m—2+2a,5;M><(n,T] + |u|0,0,5;M><(n,T])

where C = C(g+a €n,m,q, 6a m, T)

Proof: Take an arbitrary defining function p € C*°(M) for the asymptotically
hyperbolic metric g;. We can choose a covering of a neighborhood of M in M
by finitely many smooth coordinate charts (€2, ©), where each coordinate map
© is of the form © = (0, p) = (91, e 9",,0) and extends to a neighborhood of
Q in M.(See section 2.2) Then take a Mobius charts covering of M based on
the above background coordinate

{(I)Pi (32)7 (qu,}

where
B, ={(z,y) e H:dy((x,y),(0,1)) <r} x= (ml, sz’
and
(0,p) = Pp, (z,y) = (00 + poz, poy) -
And

H=H"2 {(1;1,~-~ ,w",y) c R**! :y>0}

endowed with the hyperbolic metric § = y—2 > (dxi)2. Since

2 + —1 2
cosh(dy(,), (0,1)) = I 4y
where |z]? = Y7 | (2%)? (See detail in [JR2006]). Therefore,

B, ={(z,y) e H: \x|2 + (y— COSh(’r‘))2 < cosh2(r) -1}

Let
A
Ba(z0,90) = {(z,y € H) : [z — x| + (y — y0)* < a”}

where zg = (zf, -+ ,2f) and |z — zo? = Y., (¢' — z}))?. Therefore,

Ba(0,1) € By if 0<a<+/cosh(2)—1(y/cosh(2) + 1 — +/cosh(2) — 1)
And
(14+a)?+1

2(1+a)
Then, take a = y/cosh(2) — 1(y/cosh(2) + 1 — y/cosh(2) — 1). Then, we have
two parabolic ball in Bs

B, CB,(0,1) if cosh(r) <

2

A a
(0,1) x (t — Z’t]

Qu(0,1) 2 B,(0,1) x (t —a®,#] and Qs(0,1) 2B

a
2
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Moreover, by

|9 — 9+|2.0m < €,

we have the coefficients of Ay, (g) is uniformly bounded and satisfies the condition
of lemma 2.5. Then we can use the lemma 2.5 in each Q,(0,1) and Q4 (0, 1).
Then, by Lemma 2.4, we have the result. U

Corollary 2.1 Let (M™*! g.) be an asymptotically hyperbolic manifold with
reqularity C*>*. Then, for corresponding curvature evolution flow of the nor-
malized Ricci flow

0
= hy = Aphi — 2nhi,
It l L1t T

we have
|h‘m+o¢,2m+2a,6;M><(n,T] < C(|h|0,0,5;M><(n,T])

where C = C(g4,€,n,m,, ).

2.4 Short time existence of the curvature evolution flow
on weighted space

For the short time existence of the Ricci flow on complete Riemannian manifold,
we will quote the result of [Shi1989] [Mi2002]

Theorem 2.1 (Short time existence, Theorem 1.1 [Shil989]) Let (M, g;j(x))
be an n -dimensional complete noncompact Riemannian manifold with its Rie-
mannian curvature tensor {R;;r} satisfying

|Rijkl|2 <ko¢ onM

where 0 < kg < +00 is a constant. Then there exists a constant T (n, ko) > 0
depending only on n and ko such that the evolution equation

%gij(x,t) = —2R;j(xz,t) on M
9ij(2,0) = g;(x) Ve eM

has a smooth solution g;j(x,t) > 0 for a short time 0 < t < T (n,ko), and
satisfies the following estimates: For any integer m > 0, there exist constants
Ch > 0 depending only on n,m and ko such that

sup |V Rijri(z, 1) < Co/t™, 0 <t < T (n, ko)
zeM

From Theorem 2.1, we have the short time existence of the solution for the
evolution equation for the normalized Ricci flow.

Corollary 2.2 For the curvature evolution equation

B}
Zhiy = Aphi — 2nh;
at l L1l nn;

15



where h(t) = Ricgqy +ng(t). If

sup |h|(z,0) <€ and sup |[Vh|(z,0) < e,
reM zEM

then there exists a Co and Cy such that the solution h(x,t) obtained form The-
orem 2.1 satisfy that

sup [|h||(z,t) < Coeg and  sup [|[Vh|(x,t) < Ciey
zeM z€EM

Proof : First, we have the following evolution equation
0
7 1117 < AllR]* = 2] VR[* + C]A]*

Therefore, we have
0
alth2 < Alln|? +Cn|?

The following is the from the [LY2010], we first consider the cut-off function
d5(y)
E(yas) - _(2+C2€) (t—S)

where do(y) is the distance function from the point y to the geodesic ball
By (z,/T) with respect to the initial metric go and C5 is chosen so that

1
&+ 3IVelP <0

‘We then set
J(s) = / 1]2(y, 5)e5@*)dy
M’VL

Because the curvature is bounded. By the Bishop-Gromov volume comparison
theorem, the volume is at worst exponential blow up. With this volume growth
condition and the fact that g(t) are all quasi-isometric to go one sees that J(s)
is finite for all 0 < s < t < T. The important observation here is that the non-
degeneracy implies the exponential decay of J(s) when it evolves. We compute

dJ

g(s) :/2 (Ahij = 2Ripjqhpq — 2hiphy;, hiz) e
M
+ ||h)%e* ¢ dy + Ced(s)

/M 2(AhYhet + ||h]|2e¢,dy < /M 2 <A (e%h) , (egh)>

and therefore,

dJ 3

E(S) < -2 /M < (AL +2(n-1)) (eih) ; (egh) > +Ced(s)

16



Since there always exists a lower bounded for the L? spectrum of Ay, then we
have
J(s) < e**J(0)

where A is the lower bounded of the spactrum of Ay, + 2(n — 1)Id. By Morser
iteration, we have

t
swp P Clnrd) [ [ bR s)yds
t t—7 J Bo(z,/T)

Bo(=./7)x[t=5 1]

Then, we have

d2
sup [P < e [ hPen vy
Bo(on/F) X541 M
Then
Aot
sup IR|? < C’e)‘“‘“t/ ||h||%e” TFemE 0 dvg (o)
Bo(2,4/% ) x[t—3t] M
We have
&2 Ao
S R Y N
2+ Ce)t = (2+Ce)°

We only need to choose enough large A\g such that
A
/ e VBTV, ) < o0
M

Then, we can get
sup [|A|(z,t) < Coeo
xeM

Then, by the standard parabolic estimate, we have

sup ||Vh|(x,t) < Cie
xeEM

O

Therefore, we have the short time existence of the curvature evolution flow.
Here, we only need to show that the solution of the curvature evolution is in the
weighted space. In order to show this, we need the following maximal principal.

Lemma 2.7 (Lemma 4.2 [QSW2013]) Suppose that (M™" 1, g(t)) is a smooth
family of complete Riemannian manifolds with boundary OM fort € [0,T)]. Let
u be a function on M x [0,T] which is smooth on M x (0,T] and continuous on
M x [0,T]. Assume that u and g(t) satisfy

17



(i) the differential inequality
0
Eu—Agtuga-VU—i—bu

where the vector a and the function b are uniformly bounded

sup la| <o, sup [b| < ag
M x[0,T) Mx[0,T]

with some constants a, ay < 00

(i)
supu(z,0) <0
M

and
sup  wu(z,t) <0
aM x[0,T)

T
[ [ expl-aadw.p)?] & eyt < oo
o Jum
for some positive number as.

(i)

sup
Mx[0,T)

with some constant ay < 00.

Then we have u <0 on M x [0,T].

Theorem 2.2 (Lemma 4.3 [QSW2013]) Suppose that g(t),t € [0,T], is a
solution of normalized Ricci flow starting from an asymptotically hyperbolic met-
ric gy satisfying |Rm| = < ko, |[VRm||peo(ary < k1. Then there exist numbers
C, depending on kg, ki,n,Co, and T such that
CcC
|hlo,0,6:0 < CCo,  |h|10,5 < CCo  and  [hla 0,50 < -

Vit

for allt € [0,T], if
|h]1,0,5:0 < Co

Proof : See Lemma 4.3 in [QSW2013]. From the appendix, for the curvature
flow

gh'l = ALh'l — QTLh'l

at (2 (2 (2
where h(t) = Ricy) + ng(t). Then we can get the evolution equation for the

L2 norm of h 9
§\|h||2 < AlR|? = 2[ V| + Clh|1?

18



0
5 1VAI” < AR = 2||VR|* +C (1Al + VA1)

0 2 2 2
S (t192)7) <A (¢ [9R)F) - 26w
+ (1400 | V2h|* + C (Il + 1WAl

Let p be a fixed geodesic defining function of the asymptotically hyperbolic
metric go, one knows the fact that [Agp| < Cp and ||Vgp||2 < Cp?. To estimate

‘Ag(t)p| and va(t)pHZ(t) we recall again

k
ark,
ot

= 7gkl (R“,j + le,i - Rij,l)

and thus calculate

%(Ar) = % (gij (VQr)ij)

= 2¢" gy (VQT)M + g9 g" (Ry;j + Riji — Rija) Vr

_ 2gkigljhkl (v2,r,) y

Form the fact that C~'g < g(t) < Cg and the property of the asymptotically
hyperbolic spaces, we get the estimates

[Agyp| < Cp  and ||vg(t)r||52;(t) el

We consider h = p~"h,Vh = p~'Vh,V2h = p~7V?h, and V3h = p~'V3h and
calculate 5
a”hﬂz < A[[R]I? = VA1 + C| ]2

o _ _ _ _
a7l VRIP < AIVAI? — |24 )" + € (IR + [ VIP)

o (1190l <a (192)7) ~ o 9
+ (1+Ct) | V2h|* + € (1)) + VA1)
Set
o1 = [|AlI> + VA
and
2 = |[1]* + VA + t[| 92|
and calculate that

0
—p <A C
at@l < Ap; + Oy

and

0
— s < A
8t<,02 < Aps + Copa

19



Therefore
(e—Ct(pl) < (e_CtAgol)

v Yo

= (e—Ct@Z) < (efCtAgag)
By Lemma 2.7, we can have the result.

O

Corollary 2.3 Under the assumption of the above theorem, there also exists a
number Cy, depending on kg, k1, n, Cy and T such that

l9(t) — g(0)

2,06 < C1

Proof : By the fact that g(t) = fot h(r,.)dT, we can easily get the result form

theorem 2.2. O

2.5 Semigroup and its generators

In this section, we will introduce some basic concept of the semigroup and its
generator. For more detail, refers to [Ev2010] 7.4

Definition 2.7 (Semigroup) S(t) is called the semi-group if it satisfies that

o {S(t)}i>0 is a family of bounded linear mapping from the Banach space X
to X

e S(0)=1Idx
o S(t+s)=S5(t)S(s) = S(s)S(t)
o t — S(t)u is continuous from [0,00) to X

Definition 2.8 (Generator of semigroup) Write

D(A) := {u € X| lim Sty —u exists in X}
t—0+
and s
u—u
Au = t£%1+ — (u € D(A))

We call A: D(A) — X the (infinitesimal) generator of the semigroup {S(t)}+>o;
D(A) is the domain of A.

There are some basic properties about the semigroup and its generator.
Theorem 2.3 Assume u € D(A). Then
1) S(t)u € D(A) for each t > 0.
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2) AS(t)u = S(t)Au for each t > 0.
3) The mapping t — S(t)u is differentiable for each t > 0.
4) LSt u=AS(t)u (t > 0).
Proof : See 7.4.1 Theorem 1 in [Ev2010). O

Definition 2.9 (Resolvent set) We say a real number X belongs to p(A), the
resolvent set of A, provided the operator

M—-A:— X

is on to one and onto. And if X € p(A), the resolvent operator Ry : X — X s
defined by Ryu := (A — A)~lu

Remark 2.4 According to the Closed Graph Theorem, Ry : X — D(A) C X
18 bounded linear operator.

Theorem 2.4 (Hille-Yosida-Phillips) Let A be a closed, densely defined lin-
ear operator on X. Then A is the generator of a semigroup {S(t)}i>0 if and

only if
1
(c,00) Cp(A) and ||RA|| < e for A >c

Moreover, we have ||S(t)|| < e

Proof : See 7.4.2 Theorem 4 in [Ev2010]. O

Now, let (M™*+1, g, ) be an asymptotically hyperbolic manifold and take X =
CF* (Sym>T* M"™+1) with § € (0,7n) and trivial L? kernel of P on Sym?T* M"™*1.
By the lemma 3.7 of [Le2006], the P = Ay 4 2nld is an isomorphism from C3*
to Cy"®. Then we have

1Pullgs.e > clfulloe

where ¢ > 0. And for ¢ > —\, we have
[| Pu + )\u||cg,a > A+ c)|\u||c§a
Therefore,

(—c,00) Cp(A) and [|Ry| < for A > —c¢

Atc

Therefore, P is a generator of a semigroup S(t) with |S(¢)] < e~
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3 Long time existence

3.1 The history

The long time existence, is more complicated. For the closed manifold, we
have the result of [Ye1993] which just tell us if the pinching curvature is small
enough, then we have the long time existence and convergence of the normalized
Ricci flow. For the noncompact complete manifold, we have results of [LY2010],
[QSW2013], [SSS2010], [Ba2015] which, roughly speaking, just tell us if the
smallest L? eigenvalue of the Lichnerowicz operator is positive, then we have the
long time existence and convergence of the Ricci flow. (Roughly speaking, this is
because that the positive smallest eigenvalue just implies the exponential decay
of the semigroup with respect to time [Hille-Yosida-Phllips]) Therefore, in order
to show the long time existence, the key is to get a precise eigenvalue estimate
of the Lichnerowicz operator. Generally, we have the following theorem,

Lemma 3.1 If for any smooth compact support function u, we have
(u, Au) > Au

with some constant A\. Then, for any smooth compact support tensor field w, we
have

(w, Aw) > \w

This theorem just tell us that once we have eigenvalue estimate for function,
we will have a rough eigenvalue estimate for tensor. But this is not so precise.
Actually, by the method [Bi1999] [Le2006] [Ba2015], for the symmetric spaces,
the smallest eigenvalue for tensor is always strictly bigger than the eigenvalue
for function (The difference of this two eigenvalue is the eigenvalue of Casimir
operator. See 1.2 in [Bi1999]). Then, by parametrix method of Proposition 6.2
in [Le2006] and Proposition 1.3.5 in [Bil1999], we have the isomorphism theorem
[Lemma 7.5 Le].

In [QSW], the reason that they did not fully recover the Lemma A in [Le]
by Ricci flow, is because that they just use the smallest eigenvalue for function
to estimate the smallest eigenvalue for symmetric two tensor. By this reason,
they need to require stronger nondegeneracy. See [Theorem 1.4 QSW]. In our
method, we just make use of the [theorem 7.5 Le] to get the exponential decay
of the semigroup and then by the argument of [Ba2015], we can fully recover
the Lemma A in [Le].

3.2 The main lemma

Let (M™*! g,) be an asymptotically hyperbolic space with nondegeneracy A >
0 and regularity C*®. From the section 2.5 and let S(t) : CY* — C* be the
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semi group for the linear operator Ay g¢;—p)) : C’g7a — Cg’a. Then, we have the
solution of the equation of

0
ahil = Ar(gt—1)hit — 2nhi + Q

can be written as

t—l
h(t,x) = S(t)(h(t —1,x)) Jr/l St —71)Q(7,x))dr

Remark 3.1 Form the Hill- Yosida-Phillips theorem, for small enough € > 0, if
|g""1(t) — gilcr < € and 6 € (0,n — 1), then there exists 0 < A\ < \ such that
S(lcpe < Coxp(-Ac).

Theorem 3.1 Let (M™*, g.) be an asymptotically hyperbolic manifolds with
nondegeneracy X > 0, reqularity C* and |[VRm|p~ < ki. Then, for any
0 € (0,n), there exists €g(A, k1) > 0 such that if |h|o.os.m < €0, the solution of
the normalized Ricci flow g(t,x) has long time existence and g(t,x) converges
to an Einstein manifold in the sense of CZ norm. Moreover, the limit metric is
an Asymptotically hyperbolic Finstein metric with the same conformal infinity.

Proof of Theorem 3.1

Step 1 : (Finding the iterating inequality) The following |.| refers
to the C’g’a. Given a € > 0. Let T)uq4(¢) be the supreme of T such that for
arbitrary t € [0, Tinas], [V, (9(t)) = 9(0))]0,0,6:0s < €, where m = 0,1,2. Then,
for the equation,

0

&h” = Ap(g—1yhit — 2nhy + Q

we have
1Q|<C(e)elh]
Then,

t
\h(t,z)| < e rYh(t —1,z)| + C(e)e/ e D) | n(r, 2)|dr
t—1

let G(t,z) = n[zaslc ]e’\ﬁT\hK(T, x)|. Then, we have
TElt—l,t

G(t,z) < |h(t — 1,2)| + C(e)elG(t, z)

Therefore,
RE(t —1,2)|
Ghta) < =Ll
t2) < S G
which implies that
oAl
h(t < —— |h(t =1
()] < ot =1, )
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Step 2 : (Determine the ¢ and [) Consider the function f(I) = e~ +
Ciel —1. Then, f(0) =0 and f/(0) = —A.+ Cre. We see that as e — 0, Ac = .
Therefore, we can take a proper e such that f/(0) < 0. We can also find a
positive number L;(e) > 0 such that for arbitrary 0 < I < Ly, we have f'(I) <0
and f'(L1) = 0.

Denote
el

d
q(S, 6) - Maxsglgmin{Tmaz(E)aLl(6)} m

where s is a small positive to be determined. We see that ¢(s,e) < 1 and as
s — 0, q(s,€) — 1. Therefore, for arbitrary s <1 < min{T}qz(€), L1(€)},

1
q(s,€)

Now, fix an above € and so the L;(¢) and Ty,q.(€) are also fixed. There always

exists a large enough integer N such that T"”TT(C) <Is

Again, fix a such N. Take s = 2222l Then, we have ¢(s,¢) < 1. And for

[h(t, )] < [t =1, ))|

N+1
s = E"Naiﬁs) <1 <min{Taz(€), L1},
1
|h(t, )] < h(t — 1, 2)]
(s,€
Then, by corollary 2.1, we also have
C(m,e)
V™h(t,z)| < ———=|h(t -1,z
VRt a)] < (e~ )

Moreover, by theorem 2.2, for ¢t € [0, s], we have

|| < C(s)eo, |Vh| < C(s)ey and |VZh| < C(s)eo
Vit
Then, for ¢t € [ks, (k + 1)s] where k is an integer, we have
C(s) C(s) 2 Cls)eo
hl < ) Vh| < Vh| < ———
"= q(s’g)kEO v Q(Sae)keo | | q(s, )kt

Then, for arbitrary ¢ > Tax(€), we can always take an integer K and

le [fvmﬁ , T"“Tz(ﬁ)] such that Tja.(€) <t = Kl < (K + 1)l and

X b S)S
lg(Kl,2) — g(0,z)| < Z-/(k—l) \h(7,z)|dr < 1—051(?96)60

K ks S)s
Vot a) g0 <3 [ wne e < 1 E 0



V2(g(KL @)~ 0r|<Z/ V*h ”\dT<Z/ e TdT%—q(s,e)O

we can always take €y > 0 small enough such that
s <€ C(s)s <€ C(s)s <€
—¢ - ——— ¢ - —— ¢ -
T—q(s,0) =2 T—qs,) "~ 2 T—qls,e) "~ 2
which is contradict to the choice of T,,4.. Therefore, we have long time exis-
tence.

Step 3: (Convergence) Under the assumption of step 2. We will show
that for arbitrary e, there exists a T'(e1) such that as long as the ¢1,t5 > T'(e1),
we have

IV™(g(tr, ) — g(tz2, 7)) < @
form=0,1,2.

For arbitrary 7' > 0, there exists an unique posititve integer k, such that
0 < T — ks < s. By the previous discussion, we have

1
T < —|h(T —
D(T.0)| < o (T — o)
By theorem 2.2, for ¢t € [0, s], we have
C(S)GO

|h| < C(s)eo, |Vh| <C(s)eg and |V?h|< NG

Therefore,
1
|h(T,z)| < WC(S)EO

There exists an integer K (e1) such that if & > K(e;), we have

e 6)kC(s)eo <€

Therefore, as long as T > (K (e1) + 1)s, we have
|MT,z)| < e
For arbitrary Tb > T, let ko be the integer such that 0 < T, — kos < s. Then,

we have

ka+1 ka1

1 1
T T < E < E <
l9(T2, = )| /1 s hlr,z)ldr < 8)sco q(s,e)F 1 — q(s,e)c(s)seo

Therefore, there exists K5 such that if 7' and T, greater than (K3 +1)s, we have

|g(Tg,$) - g(T,Z‘)| <eé
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By the same way, we can get

IV(9(T2,2) — g(T,2))| < &1
and

|v2(g(T27‘r) - g(Ta I))| <e

This implies the convergence of the normalized Ricci flow in the weighted space.
O Actually, from the proof, we see that actually the proof just give us a way to
generalized the time independent semigroup theory into time dependent semi-
group theory.

4 Stability of Asymptotically hyperbolic Einstein
manifolds

Theorem 4.1 Let (M™ g,) be an asymptotically hyperbolic Einstein mani-

folds with nondegeneracy X > 0 and reqularity C*>* and (M"+1,g) be another

asymptotically hyperbolic Finstein manifolds. Then, for any § € (0,n), there

exists €g(\) > 0, such that if |g — g1| < eoe™%4@0®) " Then the Ricci DeTurck
flow with the initial g has the long time existence and

lim g — g+|o,06 =0
t—00

Proof : First, the long time existence is due to lemma 3.1. In fact |[g — g4 | <
coe~04=0:7) just implies that |Ric(g) + ng| < ege~?%®0:?) . Now, we will show

lim g — g+|o,06 =0
t—00

Consider the Ricci-DeTurck flow

0

% = —2Ri(g(8)) + ViWj + VWi = 2(n — 1)g;;

where W; = g1 g; (Ffll (9(t)) — Ffll (9+)) and V is the covariant derivative with
respect to g(t).

Let h;;(t,x) = gi;(t, ) — g44;. Then the Ricci-DeTurck flow is equivalent to
the following flow

0
&hij = ALhij — 2(Tl — l)hij + Qij(t,a:)

where Ay is the Lichnerowicz Laplacian operator with respect to g4 and the
high order term @ is

Qij(t,x):g*g_l*g_,_*g;l*Vh*Vh+g*g_1*g+*g;1*VQh*h
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For details of the computation, see the appendix. Then, the solution of the
above Ricci DeTurck flow is

t
h(t,x) = S(t)(h(0,2)) + / St —1)Q(r, z)dr
0
By the parabolic estimate, we have

|Qlo,0,5 < C(eo)|ho,0,s

Therefore, we have
t
Ih(t, 2)]o0,0,5 < e ! h(0,2)0,0,5 + Cleo) / e Aot (7, 2) 3 o sdr
0

let G(t,2) = max,gj—1, ereT |hK(T7£L' Then, we have

”0,0,6'
G(t’ 3?) < |h(05 $)| + C(€O)|G(t> 33)'2

Therefore,
|h(t,7)|0,0,5 < Cleg)e o’

Therefore, we the convergence. O

5 Perturbation existence recovered by Ricci flow

Suppose that (M™,g) is a conformally compact Einstein manifold with the
conformal infinity (OM, [g]). Suppose that r is the geodesic defining function
associated with the conformal representative g € [g] on M. Then the metric
expansion is given as follows (cf. [FG] ):

gr =G+ gPr? 4. 4 g3 g ogp 4 gD 4
=g+ g2 4. 4 gBpk B[y
for 0 <k <n-—3, when n —1 is even
Gr =G4 gPr? 4. gnDpn=2 4 gl=Dpn—1
=g+gDr2 4. 4 gWpk L R)g]
for 0 <k <n—2, when n — 1 is odd, where

e g for 2i <n — 1 are local invariants of (OM"~1, g)

h and tr g =Y (n — 1 even ) are also local invariant of (oM™=, g)

h and g»~1(n — 1 odd ) are trace free

e ¢ V(n—1o0dd ) and trace-free part of g*~"(n —1 even ) are nonlocal.
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For instance,

1 . R
2 _ _ _ A
g n—3 (ch 2(n2)g>

To construct a candidate to be the right initial metric to apply Theorem 4.6,
whose conformal infinity is a perturbation of that of a given conformally compact
Einstein metric g, we set

9 =0+ 90+ gt g
where g, is a perturbation of g, and g£2i) = ¢(29) [Gv],2¢ < k, are corresponding
curvature terms of §, as given in the metric expansion in [FG]. Next let ¢ be a
cut-off function of the variable r such that ¢ = 0 when 7 > v and ¢ = 1 when
r < v1, where v; < v, are chosen later. We therefore have the candidate

g, =172 (dr® + (1= @)gr + dg")

Immediately we see that

o, — ]| < Cla. —allex

It [a2.] = Tt < Claw = dllens

R [g2,] — Rl \g < C gy = ill s
|\VEm[g2,] = VEml]| < Cllg, = gllcire

Theorem 5.1 Let (M™,g) be a conformally compact Einstein manifold of reg-
ularity C? with a smooth conformal infinity (OM,|[g]). Assume that g is of
the non-degeneracy Ng. Then, if a smooth metric [§,] is a sufficiently small
C*k*+2—perturbation of [§], then there is a C? -conformally compact Einstein
metric on M whose conformal infinity is [§,]

Proof: First of all, from the above discussion, it is clear that g;ﬁ’,y satisfies the
Theorem 4.6.

Theorem 5.2 Let (M™,g),n > 5, be a conformally compact Einstein man-
ifold of regularity C* with a smooth conformal infinity (OM,[g]). with non-
degeneracy. Then, for any smooth metric §, on OM, which is sufficiently C*
close to some § € [g] for any a € (0,1), there is a conformally compact Einstein
metric g, on M which can be C? conformally compactfied with the conformal
infinity [g,].
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6 Appendix

6.1 The variation of the connection

Let V and V be the connections for the metrics g and § respectively. Take
the normal coordinate with respect to g at the point pg. Let {e;}; be the

coordinate frame of this normal coordinate. Then we have

~ 1 ~ ~ ~ d
Vie; —Vie; = §gkl(ngli — Vigij + Vigi) = Cliex

Then
S b
(Vz - Vl)a - Cijaj
v J1 k1
(Vi = Vi)hje = =C5j hj i — Cijg hi,
k) . . s .

where a" is a covariant one order tensor and h;; is a contravaiant two order
tensor.

6.2 The variation of the curvature
With the same condition of proceeding section, we have
R(ei, ej)ak = —VZ'Vjak + Vjvia"’ + V[ei’ej]ak = Rfjkl ak
Since - o
Vz«a] = Viaj + Cijjl Cljl7
we have
ViV;d* =V;V;a* + Ck V,ah — C1 v, df
:6 (V a +C]k a )+Clk1(v]'ak1 +Cj]-€,$2ak2)—cj?(vha, +C
=V:V,a* + (V;Ck, )™ + C* ﬁia’fl +Ch, Vab + Cf, Ot aP?
—C’hV LaF —leClkl

Gk @

Similarly, we have
Vjviak Zﬁjﬁiak + (@ Ck ) iy C’k]ﬁ@jakl + Ck (V akl) + Ck Czkklz k2
— CiiV;,aF = CILCF M
Therefore,
R(ei, ej)ak = — ViVjak + Vjviak
=—ViV;a" + V;Vid" + (=V;Cl, +V,;Ch )a*

+ (- Czle]k,jQ—kC’-“ Chyak + (C“C]lkl CiCry,)a™
=R(e;,ej)a" + (=V,C¥, + V;Ck )a* + (- CzklOJk,;z +Ch Cl Yak?
Rz]kl M
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k

Take a = a"ey, = 6lkek = ¢;. Then, we have

szl - R’L]l + ( v C gl + v Czké) ( zklckl + Cj]?klcikll)

Since
ViCy, =1gkk1 [ViVigej — ViV gi + ViVige,]
%@ M Vigkiy — Vi git + Vg, 1]
and
V,Ch =59 MV Vigkei = ViV i + V;Vige,]
+ %@jgkkl (Vigkri — Vi Git + Vigrl,
we have
Rl =Ry — ;gkkl [ViVigirj — ViV it + ViVigry

- o - 1. 5 5 5
—V;iVigr,i + ViV, ga — V;iVigra] — *Vz'gkkl Vigrj — Vi gji + Vg
1= 5 - 5
+ ingkkl [Vigryi — Vi, gi + Vigra] + (= C’Zle]’.“ +Ch CE.
Furthermore, we have

1.
szl Rz]l 2 kkl [V Vlgklj - V v1<1g]l + v ng/ﬁl

@ 19k1i + @j@klgil - @j@igkll] - *@igkkl ngklj - @klgjl + @jgkll]

>—l<]z

+ =Vig"™ Vigki — Vi gi + Vigra] + (- Czkzlc]]'cl Cjklcﬁl)

— DN

— (g™ = ) ViVige — ViVigii + ViVigu

LN

—VVigi + ViV gi — ViVige,
Therefore, we have the Ricci curvature is
. 1 ., o~ . -
Ry =Ry — §g]kl ViVigrk,j — ViV, gji + ViVjgr
- . - 1. . . .
= ViVigki + ViV g — ViVigea] — §Vz‘gm [Vigrij = Via gt + Vjgril

+ *@jgjkl [@lglm - @klgil + @igklz} + (*C’f—klcfl + Cjk Cfll)

— N =

— 5" = M) ViVigr,y = ViV gji + ViVigr

TN

—ViVigryi + ViV gi — Vi Vigri]
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Let
Lo ke = = le ke = =
- §Vz‘9 (Vigri — Viigji + Vigea] + §Vj9 Vigkii — Vi, git + Vigi)

Q =
, , 1 0 - - .
+ (=CJ, Cff + CH, Cit) = i(gjk1 — §")ViVigr,j = ViV gjt + ViVigry

- @j@lglm‘ + @j@klgil - @j@igkll]
=gx*g- *g*g_l*(@g)*(@g)—i—g*g_l*g*g_l*(g—g) @Qg

Therefore, we have
. 1 ., - - _ . L
Ry =Ry — =" [ViVigk,; — ViV gjt + ViVigr

- @j@zgkli + @j@klgil — @j@igkll] +Q

And
15 le gz Lok o ¢ 5 &
Ry =Ra iAgil - ivivlg ki — 59 (=V;iVigri — ViVigi) +Q

Since o o ) N
ViVigri = ViVjgri + RE Groi + R 10,

Vi Vigrt = ViVigra + R53 gra + Ré»lﬂgkll“

_ 1- 1o - .
Ry =Ri = 58ga = 5ViVig™ gr + Q
+ 57 ViV ki + ViVigea + R Gkoi + B gk,i, + RY% Gkot + B9800,

Therefore, we have
I _ _ s
R =R — 5[Aga — Ry gryi — R grot — 2577 R 95,4,

1~ - . o
— §[V¢Vzgﬂ“gklj — GV 9k — 7 ViV ge0] + Q

N s = =
Ra =R — 5[Aga — FM Rijgrys — 3" Rijgna — 267 B3 gn,4,]

1~ ~ _. o~ = e -
- §[Vivlgjk19k1j — P ViVige — P ViVigral + Q

. 1 . o o o
Ry =Ry — 5 [Agit — @ Rijgryi — 7 Rijgrn — 267 57 Rjtiiy Gha iy

1~ - L L
— §[V¢Vzgjklgk1j — 7"V 9k — 7 ViV igea] + Q
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. 1 - o o o
Ry =Ry — i[Agil — 3 Ryigri — 37" Rijgrn + 2677 52 Riiy1 gkvin )

1~ = [ o
- g[Vinnglgklj — PGk — P ViVigra] + Q

Now, define the Lichnerowicz Laplacian as
Argi = Ngi — 7" Rijge,i — 7% Rijgra + 257" 3% Riigtj oy
Therefore, the Ricci curvature can be written as

1 - - o T
Ry =Ry — §[AL9iz +ViVid™ g i — 7 ViVige — @5 ViVigra) + Q

Moreover, let h = g — g. Then, we have

1 - - R [T
Ry =Ry — i[ALhil +ViVig*  hiy s — VIV g — GV hi] + Q
We call

1.~ -~ o~ e -
_i[ALhil + ViVig  hiy g — P VIV g — ViV g
the Linearization of Ricci curvature at § and denote it as Lz(h)
Remark 6.1 In some textbook, the Riemannian curvature is defined as

R(ei,ej)ek = ViVjek — V]Viek — V[ei,ej]ek

And Ricci curvature is defined as

n
_ l
Rjk — Z lek
=1

where n is the dimension of the manifold. (Our definition about Ricci curvature
18 Ry, = Z?Zl jok) Comparing with our definition, the difference of Rieman-
nian curvature is just a negative sign. And the Ricci curvature of these two
definitions are exactly same.

32



Non-elliptic term : There is an non-elliptic term which is
Lo g amp,  _ ah o, s,
5 [vzvlg hk1] g vlvjhklz g vzv]hkll]
1 . o~ - .

27 §5 ViVihk,j = ViVihii = ViV 'hklz]

1 L Lo L
=59 j'“[ (ViVihi,j —2ViVihe,) + ((V i Vihy,j — 2V;Vihy,)]
1

2
1k k PJ
+-Qgﬂluaﬁnhkn—+f%ghkuJ

- 1
jkl[ Vl( thkli + Vihg,; — vkl hji) 9

1 - - 1o - . N
= 2 Jkl[ Vl(V hiyi — Vihg; + Vklhji) + ivi(vj'hkll — Vihg,j + vklhjl)]

1. ~ ~i11 Vv v
=— 59] ! [gmivlg 12(Vihiyiy — Vighigj + Vi Rjiy)

I - -
+ gu, §V¢9“l"’(vjhk1l2 = Vi hieyj + Vi b))

1 i
= — gjk1 [gmvl(l“ !

D) k1j Fklj) +gll1v (F

l
klj - Fkllj)]

Then, we have

Vi(=Vjihi + Vil ; — Vi b))

1~ - L [ 1o e -
5[Vivlgjklhklj*gjklVlvjhklrgjklvivjhklz] = *igjkl [Gii, VICL +3u, ViClL ]

Now, let V; = §7%1 g, C,illj and V; = g% gy, C’,lcllj. Then, we have
Lo g sl R Ry kS Lie =
§[Vivlg hi,j — G ViVihi,s — 37" Vi Vjihi,) = —§[V1V¢ + V., V]
Gauge term : Consider

W, = gjklng“

by ond Wi = g% gu, C}}

kij*

Gauge term refers to
1
Q[VlWi + ViWi]

Then,
1
1 - - .
:§[VZW¢ + VW, — Ollil Wi, — Czlll Wll}
1. ~ ~ -
=5 [ViVi+ ViVl + Vi(W; = Vi) + Vi(Wi — Vi) — Gt Wy, — Cli W]

1 - i 1 ) |
:i[VzVi + Vil + i[vl(Wi = Vi) +Vi(W, = W)] - i[szz‘l Wi, + Czlll Wi,
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where

1. ) 1 .
5 Vi(Wi = Vi) + Vi(Wy = Vi) = 5 [Cli Wi, + Cjt Wi

N — N
—
41
S

jkl )gul C]?u + gjkl (vlgnl )Ckllj

(Vs ]kl)glhcllfllj + gjkl(vzglllcku)]

(97" giiy — 77 i )VICRE 5 + (07 gy — 77 G, ) ViG] — *[Cliil Wi, + CHi W]

I
NIE o+
—

<]x N

. 1
197" 9ii, Ci s + 9 (Vigia, ) O + (Vig?™ ) gu, C;?IJ + 29] “(Vigu, C;m)]

_|_

9" (gii — it )VICL; + (9% = 377)3is, VIO
1
2

+
w\»—ll\:)\l—lw\n—\

9" (g, Gu, )ViCyL 5 + = (g7 — 377 g, ViCy!

17
[Cl Wi, + Cii Wi,
Therefore,

1 1 -~ -

5 ViW; + VW] = g[lei + ViVl + @1
where

1 l oy
Q1 25[(Vl9jkl)gmcklu + 9" (Vigii )CR 5 + (Vig™ ) gu, CL + 29]’“(%9”10,“])]
1

+ igjkl (giis — Gii)\VICR 5 + (97 — 37" 3is, VICYE,
1 1 .
+ 597 Yo, — Gu, )ViCyL; + 2(93161 — "), ViC}l

— S[CiW + O]

=gxg txgxg x(Vg)x(Vg) +gxg  xgxg % (g—g)*(V9)

Therefore,

Q+Qi=gxg %G5 "+ (Vg)x(Vg)+g*g ' xgxg " *(g—3g)*(Vg)

Ricci-DeTurk term : Consider
1
Ric(g) — 3 ViW; + V, W]
Then,
. 1 L 1+ -
Ric(g) — 3 [ViW; + VW] = Ric(g) — §AL(9 —9)+Q+Q

The linearization of the gauge term at different metrics : Let g be
another metrics with Christoffel symbol I'. Then
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Wi :gjklgiilclillj = gjklgiil [F?U‘ - f?lj} = gjklgiil [(Fillj - f‘?lj) + (lelj - lelj)]
— 1= - 1o _ = =
="M Vg — 5 Vigkij = Vidki §Vz’gk1j] =g ' (Vg+Vg)
Let - . B o
Vi = g™ gui, (T3, = TR.).
and ‘ 4 B
Vi= §jk1§ii1(rﬁj -
Similarly, we have

_ Tl

Wy =g gu, (T} K

k1j )+ (T}

=
APy )]
. 1. _ 1 e o
=" [V ka1 — 5 Vigkii = Vit + 5Vidkil = 9 '+ (Vg +V9)
And - A - ~
Vi=g"qu, (Fi;llj - Fi;llj)
and

Vi = g% gy, (T}

k1j Fklj)

More specifically, the gauge term can be written as
1
i[VlWi + VlI/Vl]
1 _ _ _
:g[lei + V. W, + (Vl — Vl)Wi + (Vz - VZ)VVI]

1 _ _ _ _ _ _
=§[V1V2 +ViVi+ (Vi = V)W + (V; = Vi) Wi + Vi(W; = Vi) + V(W — V)]

1. - _ 1 _ — 1 - _ _ _
§[V1V2 + ViVl + 5[(Vl - V)W + (Vi = Vi) W] + §[V1(Wi -Vi=-Vi))+V.(W, = Vi = W)]
1
where

%[(Vl — ?I)Wz + (Vi — vl)VVl]

1 - 1
= 5(% - Fl;)Wil - )

1. _ _ 1 _ _ _
=- ZQ“” (ViGii, — Vis gii + ViGint) Wiy, — EQMZ (Vigu, — Vi,9i + Vigir, )W,

(i = Ti)W,

1 .. . _ _ _ 1 - 1o .
=— —g"2g" (Y1911, — Viyaii + ViGin1) (Vi Ghris — =Vigyi — Vi + = ViyGk1j)

4 2 2
1 A _ _ _ 1_ - 1o
- 1911[29Jk1(vi9112 — Vi, 9i + Vigii, ) (Vigra, — §Vllgk1j — V,iGka, + ivllgklj)

=gxg "% (Vg)* (Vg+Vg)
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and

Vi(W; = Vi = Vi)
:vl [gjklgiil [(F?lj - f‘zllj) + (f‘?lj B f‘?lj)] o gjklgiil (f‘?lj B f‘zllj) B gjklgi“ (lelj o f‘;‘fllj)}
9" gii, (F?lj - f?lj) + 9" gis, (f‘i;llj - f‘i;llj) — "G, (f?lj - f?lj) = 7" g, (T3, — T},

=V, kyj klj)}
=i (g7 = )i (Ti, = T8, ) + 87 (9, — 960 ) (Th, — TR, )]

—

+ Vi {(gjkl — 37941, Ty, — f;;llj) + % (giiy — Giiy )(fi;llj - f‘?lj)]
=(Vig"" ) gis, (T} = T3 ) + 07" (Vigas, )Ty, — T3 )

(g7 = ") giin + F7" (g0 — 3 IVUT; — T3 )

+ (Vig ) gii, (T3 = T3) + ¢ (Vigan ) (TR, — T3 ))

+ (" = 7" gii, + 7 (9, — Gaa)IVU(T}; = T3 )
=gxg ' xgxg xgxg % [(Vg)* (Vg) + (9 - 9) * (V?9)

+(Vg) % (V) + (9 —9) * VG + (9 — 9) * (V3) * (V)]
=gxg ' xgxg xgrg ! x[Vgx (Vg+Vg) + (9—9) % (Vg + V2§ + Vi*Vg)
Therefore,

ViW, =Vi= Vi) + Vi (W, =V, = V)
:(?lgjkl)giil (F?lj - fiﬂj) + g™ (vlgiil)(]‘—‘;;gllj - ]‘:‘7];@11]')

+ (g™ = ") gii, + 7" (gi — 3 IViT; — T3 )
+ (?lgjkl )Giiy (ff;j - f‘Lllj) + g™ (vlgih)(f?lj - f‘?u‘)
+(g"™ = ") gu, + 7 (gu, — gu) V(T — T3 )
+ (Vig™ ) gu, (T3, = T3 ) + ¢ (Vigu, ) (TR, = T3 )
+ (™ = F")gu, + 77" (gu, — qu)IVi(TR,; — ffcll,j)
= j il ™l j = 1 ™l
+ (Vag ) gu, (T =T ) + 7 (Vigu, ) (TR, = TRL)
+ [(gjkl - gjkl )gll1 + gjkl (gll1 - glh )]vz(ri;ll] - Fggll])

=gxg ' xgxg lxgxg % [Vgx (Vg+ Vi) + (g — ) * (Vg + V3§+ Vj* Vj)|

le- ==y 1o 00 - . ] ~
S ViVi+ ViV =5 Vilg"" iy (T — T )] + ivi[g]klglll(rglj -]
=gxg ' xgxg " x Vg
Therefore, we have
1 1 .- _
3 [ViW; + V., W] = 3 [VlVi + Vle]

+gxg txgxg txgxg  x[Vgx (Vg+Vg) + (g — ) * (VP9 + V?§+ Vi Vg) + V7§
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The Linearization of Ricci-DeTurck term at different metrics : Let g
be another metric. Then, the Ricci-DeTurck term can be written as

Ric(g) — 5[V1Wi+ ViWi] = Rie(g) — 55100~ 9) + Qs

1
2

where

Q2 = gxg~ ' xgxg  xgxg  *[Vgx(Vg+V7)+(g—9)*(Vg+V?§+V§*Vg)+ V77|

N0W71eth:g—§andl~1=§—§. We have

1 1
Ric(g) [ViW; + V;Wi] = Ric(g) — iALh + Q2

2
where

Qo = gxg GG xgxg L% [Vhx(Vh+Vh)+hx(VEh+V2h+Vh«Vh)+V?2h]

6.3 The variation of Lichnerowicz Laplacian operator

Let Ay and Ay be the Lichnerowicz Laplacian operator for the metrics g and
g respectively. And let

S ko k _ ok ke
Vjia® —V;a® = Cj a

and - B -
Chry = 3" (VGkaks — ViaGjks + ViaGiks)
Then we have
(AL = Ap)gi =(A — A)gu — (" Rijgri — 7% Rijgryi) — (6% Rijgra — 3% Rijgr,)
+ 200 5" 2 Riiy1i Ghris — 377 G2 Riigtj Geris )
where
(A~ A)gi ="V ;Vi, 90 — " V;Vi, g9u
=g — PV Vi, gi + 7 (ViViga — ViV gi)
and
P (Vi Vg — ViV gi) =" [Vi(Vi, = Vi) ga + (Vj = V) Vi, ga
+(V; = Vi) (Vi, = Vi)ga + (V; = V;) Vi, 9]
=gxg ' xgxg ' #[(V) *Vi+ V33 xyg
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Therefore,
(A = A)ga =3 = §")V;Vi, gu
+gxg  xgxg  x[(Vg) x Vg + V2l x g
+gxg txgxg (V) (Vg)

For the zero order term

7" Rijge — 07" Rijgrg = (7% — 3" Rijgen + 37" (Rij — Rij) g
=" = ") Rijgra + G+ 3 xgxg % [VixVi+ (5 —9) * V3Gl xg
=g*g ' xgxg ' *[VgxVi+(3—9) * (V?G+R)*g
By the same way, we can get that

e e
GG RiigiGhriy — 8 G Riig1 Oy i
P A _

=(g"" 9" — " 3" Riigtjgryi, + 3771 2 (Riigty — Riigtj)Grrin

=[(g" — g )g" " + P (7 = )| Risgii ki, + 7572 (Riigty — Riigty) i
=gxg lxgxg % [VgxVi+(G—9)* (V?G+R)*g
Therefore, we have

(AL —AL)g=g+§  *gxg " *[Vg*xVi+(§—9) *(VG+R)*g
+Gxg txgxg % (Vg) = (Vg)

6.4 Curvature evolution equation

Consider the normalized Ricci flow

%g(t) = —2 (Ricy() +(n — 1)g(t))

Let h(t) = Ricg) +(n — 1)g(t). We will induce the corresponding evolution
equation of h(t).

d d _. d
d .
:a RICg(t) —2(71 — l)h(t)
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For simplicity, we will write Ricy(;) as Ry and write the Riemannian curvature
as R;jr. By the previous linearization of the Ricci curvature, we have

_ 1 . - o o
Ry =R — §gjk1 (ViVigk,j — ViVia gt + ViVgiu
o o o 1. . _ 3
= V;iVigr,i + ViV giu — ViVigra] — *Vigjkl (Vigk,j — Vi, gj1 + Vgryl

+ V9" [Vigi — Vingi + Vigea] + (—=C3, Clt + C3, CiY)

— Nl

— = (g — ") [ViVigk — ViV gjt + ViV
— V;iVigkyi + ViV, git — V;Vig, ]

N

Therefore,

d 1 .
7 Rici = =2 59]]“ [ViVihi,j — ViV hj + ViV jhie — ViVl + ViV ha
Since _

\ vlhklz = VN Piyi + lek Pieyi + Rﬁihklil

V; Vil = ViVhg, + R it + R by,

we have

d . 1 1 .
S Bici = = (=2)5Aha + (—2)§9jk1 ViVl i + ViVl — ViVihy, ]

1

+(=2)59 TUREE i+ R ihiyiy + R Byt + RY iy,

% IRV by i 4 ViV — ViVihe, ]
; m[ Vi(Vihiyi + Vil — Vi hji) + %vi(—vjhklz + Vihg,; — Vi hjt)]
By the contraction of second Bianchi identity,
9" (VRyyi + ViRp,; — Vi, Rji) =0
and h = Ric+ (n — 1)g, we have

1 1
%RZC%Z == (72)§Ahll + (7 )2 Jkl [Rffkl hkﬂ + R]llhkN«l + R jiky hkzl + Rﬂlhklll}
1 . A o
=- (—2)§[Ahu — ¢ Ry, — ¢ Rijhyy + 2975 7 Ryiyiih, i,
1
=—(-2)zArh;
(=2)5ALha
where Ay, is the Lichnerowicz Laplacian operator defining as following

Aphit = Ahyg — g™ Rijhi,i — g7 Rijhigi + 297" 9% Riigihig,
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By the fact that R;; = hyj — (n — 1)gi;, we have

d 1 ) L
aRil = —(—2)§[Ahu —2¢9" By + 2(n — Dhy + 2675 g2 Ry i by i,

Therefore, we can get the curvature evolution equation, which is

d . o
ahil = Ahy — 2¢7% hyjhiyi + 2977 g 2 Ry i,
or
d
%hil = ALhil - 2(n - l)hil

In particularly, for normalized Einstein manifold with negative Ricci curvature,
we have

Riy = —(n—=1)gi)

Therefore,
Aphi = Ahy + 2(n — Dhi + 2¢7% "2 Ry by, i,

Moreover, for the hyperbolic space with the sectional curvature equal to —1, we
have
Riiyi; = —(9i1Ginj — 9i9iot)

Then, we have

Aphy =Ahi +2(n — Dhy + 26 6" 2 Ry 1;hn,5, = Ahip + 2(n — 1)hy + 2hy
=Ah; + 2nh;
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