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Abstract. In this paper, we investigate the behavior of the normalized
Ricci flow on asymptotically hyperbolic manifolds. We show that the normal-
ized Ricci flow exists globally and converges to an Einstein metric when starting
from a non-degenerate and sufficiently Ricci pinched metric. More importantly,
motivated by [QSW2013] [Ba2015], we also establish the regularity of conformal
compactness of the normalized Ricci flow towards time infinity. Therefore we
are able to fully recover the existence results in [GL1991] [Le2006] [Bi1999] of
conformally compact Einstein metrics with conformal infinities thich are per-
turbation of that of given non-degenerate conformally compact Einstein.
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1 Introduction

Since the seminal work of Fefferman and Graham [FG1985] there have been
great interests in the study of conformally compact Einstein metrics. Lately the
use of conformally compact Einstein manifolds in the so-called AdS/CFT corre-
spondence in string theory proposed as a promising quantum theory of gravity
have accelerated developments of the study of conformally compact Einstein
manifolds. As it was foreseen in [FG1985], the study of conformally compact
Einstein manifolds now becomes one of the most active research area in con-
formal geometry. But the existence of conformally compact Einstein metrics
remains to be a challenging open problem in large.

In this paper we study the normalized Ricci flows on asymptotically hyper-
bolic manifolds and use normalized Ricci flows to construct conformally com-
pact Einstein metrics. We recall that Ricci flow starting from a metric g0 on a
manifold Mn is a family of metrics g(t) that satisfies the following:

d

dt
g(t) = −2 Ricg(t)

g(0) = g0

We then consider the normalized Ricci flow as follows:
d

dt
g(t) = −2

(
Ricg(t) +ng(t)

)
g(0) = g0

It is easily seen that the above two equations are equivalent. In fact explicitly

gN (t) = e−2ntg

(
1

2n

(
e2nt − 1

))
solves the second equation if and only if g(t) solves the first equation.

Naturally one initial step is to study normalized Ricci flows starting from
metrics that are close to be Einstein. Such questions on compact manifolds were
studied in [Ye1993], where it was observed that the normalized Ricci flow exists
globally and converges exponentially to an Einstein metric if the initial metric
g0 is sufficiently Ricci pinched and is non-degenerate. There are also several
works in the non-compact cases. In [LY2010], the stability of the hyperbolic
space under the normalized Ricci flow was established. This stability result on
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the hyperbolic space in [LY2010] later is improved and extended in [Ba2015]
[Ba2014] [SSS2010] [Su2009].

To be more precise we say a metric g on a manifold Mn is ε-Einstein if

‖hg‖ ≤ ε

on Mn, where the Ricci pinching curvature hg = Ricg + (n − 1)g. The non-
degeneracy of a metric is defined to be the first L2 eigenvalue of the linearization
of the curavture tensor h as follows:

λ = inf

∫
M 〈(∆L + 2(n− 1))uij , uij〉∫

M ‖u‖2

where the infimum is taken among symmetric 2-tensors u such that∫
M

(
|∇u|2 + |u|2

)
dv <∞

and ∆L is Lichnerowicz Laplacian on symmetric 2-tensors.

We first, based on the ideas in [Ye1993] [Ba2015], obtain the following global
existence and convergence theorem of the normalized Ricci flow on non-compact
manifolds. The reason that we consider the curvature flow is that this flow is
strictly elliptic flow which is easier than directly considering the Ricci DeTurck
flow. In the setting of Ricci DeTurck flow, we still need to consider the long
time existence and convergence of harmonic map flow.

Theorem 1.1 Let (Mn+1, g+) be an asymptotically hyperbolic manifolds with
nondegeneracy λ > 0, regularity C2,α and n ≥ 4. Then, for any δ ∈ (0, n),
there exists ε0(λ, k1) > 0 such that if |h|0,0,δ;M ≤ ε0, the solution of the nor-
malized Ricci flow g(t, x) has long time existence and g(t, x) converges to an
Einstein manifold in the sense of C2

δ norm. Moreover, the limit metric is an
Asymptotically hyperboli Einstein metric with the same conformal infinity.

The theorem 1.1 actually is a generalization of the theorem 4.1 in [QSW2013].
In [QSW2013], they require the weight δ satisfied the following

δ ∈

(
n

2
−min

{
√
λ,

√
n2

4
− 2

}
,
n

2
+

√
n2

4
− 2

)
In this paper, we only require that

δ ∈

(
n

2
−
√
n2

4
,
n

2
+

√
n2

4

)
= (0, n)

The reason that we can modified the term
√

n2

4 − 2 into
√

n2

4 is that we use

a more precise isomorphism theorem of Laplacian operator on weighted space
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(Theorem C [Le2006]) instead of the maximal principal for L2 norm of h.

Moreover, once we have the long time existence and convergence of normal-
ized Ricci flow, we can derive the following stability theorem of asymptotically
hyperbolic manifolds.

Theorem 1.2 Let (Mn+1, g+) be an asymptotically hyperbolic Einstein mani-
folds with nondegeneracy λ > 0, regularity C2,α and n ≥ 4. Let g be another
asymptotically hyperbolic metric on Mn+1. Then, for any δ ∈ (0, n), there ex-
ists ε0(λ) > 0, such that if |g− g+| ≤ ε0e−δd(x0,x), Then the Ricci DeTurck flow
with the initial g has the long time existence and

lim
t→∞

|g − g+|0,0,δ = 0

For the stability result of hyperbolic space Mn+1 = Hn+1, Schulze, Schnurer
and Simon ([SSS2010]) have shown stability of n ≥ 3 for every perturbation
|g − gHn+1 |L∞ is bounded by a small constant depending on ‖g − gHn+1‖L2 .

While Li and Yin ([LY2010]) have shown a stability result of n ≥ 2 for the
Riemannian curvature approaches the hyperbolic curvature like ε1(δ)e−δd(x0,x)

Furthermore, Bamler ([Ba2015]) have shown stability of n ≥ 2 for the per-
turbation |g − gHn+1 | = h1 + h2 for which

|h1| ≤
ε1

d(x0, x) + 1
and sup

M
|h2|+

(∫
M

|h2|q
) 1
q

≤ ε2

for every q <∞.
It easy to see that the stability result of [Ba2015] just implies that the sta-

bility result of [SSS2010].

For the theorem 1.2, if we take g+ is the standard hyperbolic metric, then
this stability result is implied by the stability result of [Ba2015].

By the theorem 1.1, we can fully recover the perturbation existence results in
[GL1991] [Le2006] [Bi1999]. The idea is to construct an asymptotically hyper-
bolic metric with prescribed boundary which satisfying the condition of theorem
1.1. Then we apply the theorem 1.1 to get the asymptotically hyperbolic Ein-
stein metric with this boundary.

Theorem 1.3 Let (Mn, g+), be a conformally compact Einstein manifold of
regularity C2 with a smooth conformal infinity (∂M, [ĝ]). And suppose that the
non-degeneracy of g satisfies

λ > 0

Then, for any smooth metric ĥ on ∂M , which is sufficiently C2,α close to some
ĝ ∈ [ĝ] for any α ∈ (0, 1), there is a conformally compact Einstein metric on M

which is of C2 regularity and with the conformal infinity [ĥ]
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Our paper is organized as follows: In section 2.1, we first introduce the
normalized Ricci flow and its curvature flow which is to prove the long time
existence and convergence of normalized Ricci flow. Then we introduce the
Ricci DeTurck flow and its linearization which is to show the stability result
of theorem 1.2. In section 2.2, we introduce some basic concepts of asymptot-
icallly hyperbolic manifolds and Mobius chart which are important to do the
parabolic estimate on the asymptotically hyperbolic manifolds. In section 2.3,
we just introduce the interior parabolic estimate on weighted space (The cor-
responding elliptic estimate can be seen in Lemma 4.8 of [Le2006]). In section
2.4, we just generalized the result short time existence of Ricci flow [Shi1989]
and [Mi2002] into the weighted space that is to say the Ricci flow preserve the
decay of metric for a short time. The idea is from Lemma 4.3 in [QSW2013]
which is a generalized maximal principal (Lemma 4.2 in [QSW2013]). In sec-
tion 2.5, we use the Hille-Yosida thoerem about semigroup to show that the
isomorphism theorem [GL1991] [Bi1999] is equivalent to the exponential decay
of the heat kernel of the linear heat equation. In section 3, we make use of
the method of [Ba2015] plus a little tricky linearization method to get the long
time existence and convergence of the normalized Ricci flow. In the section 4,
we recall the metric expansions in [FG1985] for conformally compact Einstein
metric and apply normalized Ricci flows to reproduce perturbation existence
results in [GL1991] [QSW2013] [Bi1999].

2 Preliminary

In this section, we will review some basic result of normalized Ricci flow and
parabolic equation on asymptotically hyperbolic manifolds.

2.1 Curvature flow and Ricci DeTurck flow and its lin-
earizations

Let g(t) be a family of metrics on the same manifolds Mn+1 satisfying the
normalized Ricci flow 

∂

∂t
g(t) = −2

(
Ricg(t) +ng(t)

)
g(0) = g+

Let h(t) = Ricg(t) + ng(t). Then, we can get the evolution equation of h(t) as
following

∂

∂t
hil = ∆Lhil − 2nhil

where ∆L is the Lichnerowicz Laplacian operator defining as following

∆Lhil = ∆hil − gjk1Rljhk1i − gjk1Rijhk1l + 2gjk1gi1i2Rii2ljhk1i1
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Moreover, we can also write the above as

∂

∂t
hil = ∆L(g(t−l))hil − 2nhil +Q

where

Q =[∆L(g(t)) −∆L(g(t−l))]hil

=g(t) ∗ g(t− l) ∗ [∇̃g(t) ∗ ∇̃g(t) + g(t) ∗ (∇̃2g(t) +R(g(t− l)))] ∗ h
+ g(t) ∗ g(t− l) ∗ [∇̃g(t)] ∗ ∇̃h

where ∇̃ is with respect to g(t− l).

The following metric flow is called the normalized Ricci-DeTurck flow

∂

∂t
gij = −2Rij(g(t)) +∇iWj +∇jWi − 2(n− 1)gij

where Wj = gll1gjk(Γkll1(g(t)) − Γkll1(g(0))) and ∇ is the covariant derivative
with respect to g(t).

Linearization : Let hij(t, x) = gij(t, x) − gij(0, x). Then the Ricci-
DeTurck flow is equivalent to the following flow

∂

∂t
hij = ∆̃Lhij − 2(n− 1)hij − 2(R̃ij + (n− 1)g̃ij) +Q′ij(t, x)

where ∆̃L and R̃ are the Lichnerowicz Laplacian operator and Ricci curvature
with respect to g(0) = g̃ and the high order term Q is

Q′ij(t, x) = g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ∇̃h ∗ ∇̃h+ g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ∇̃2h ∗ h

For details of the computation, see the appendix.

2.2 Asymptotically hyperbolic manifolds and its Mobius
charts

In this section, we will introduce the asymptotically hyperbolic manifolds and
Mobius chart. In the Mobius chart of asymptotically hyperbolic manifolds, the
metric can be uniformly bounded (See Lemma 2.1) and approaching the stan-
dard hyperbolic metric as approaching the boundary. Therefore, we can get a
pretty good globally elliptic and parabolic estimate. Most content of this sec-
tion is from [Le2006].
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2.2.1 Asymptotically hyperbolic manifolds

In order to define the asymptotically hyperbolic manifolds, we need to first
introduce the conformally compact manifold. Defining function is the key in
these concepts.

Definition 2.1 (Defining function) Let M̄ be a smooth, compact, (n + 1)
-dimensional manifold-with-boundary, n ≥ 1, and M its interior. A defining
function will mean a function ρ : M̄ → R of class at least C1 that is positive in
M, vanishes on ∂M, and has nonvanishing differential everywhere on ∂M.

Definition 2.2 (Conformal compactness) A Riemannian metric g on M
is said to be conformally compact of class Cl,β for a nonnegative integer l and
0 ≤ β < 1 if for any smooth defining function ρ, the conformally rescaled metric
ρ2g has a Cl,β extension, denoted by ḡ, to a positive definite tensor field on M̄.

Remark 2.1 For such a metric g, the induced boundary metric ĝ := ḡ|T∂M
is a Cl,β Riemannian metric on ∂M whose conformal class [ĝ] is independent
of the choice of smooth defining function ρ; this conformal class is called the
conformal infinity of g.

Definition 2.3 (Asymptotically hyperbolic manifolds) If g is conformally
compact of class Cl,β with l ≥ 2, and |dρ|2ḡ = 1 on ∂M, we say g is asymp-

totically hyperbolic of class Cl,β and the corresponding manifold is called
asymptotically hyperbolic manifold.

We begin by choosing a covering of a neighborhood of ∂M in M̄ by finitely
many smooth coordinate charts (Ω,Θ), where each coordinate map Θ is of
the form Θ = (θ, ρ) =

(
θ1, . . . , θn, ρ

)
and extends to a neighborhood of Ω̄ in

M̄. Throughout this monograph, we will use the Einstein summation conven-
tion, with Roman indices i, j, k, . . . running from 1 to n + 1 and Greek indices
α, β, γ, . . . running from 1 to n. Therefore, we can write

(
θ1, . . . , θn, ρ

)
as θi if

we think of ρ as θn+1.

We fix once and for all finitely many such charts covering a neighborhood
W of ∂M in M̄. We will call any of these charts ”background coordinates”
for M̄. Take a local background coordinate (θ, ρ). Define Hc(p) as the following
set

Zc(p)
∆
= {(θ, ρ) : |θ − θ(p)| < c, 0 ≤ ρ < c}

And define the set Ac as following

Ac
∆
= {p ∈W : ∃ backgroud local coordinate chart (U, θi) such that Zc(p) ⊂ U}

We see that for c1 ≤ c2, we have Ac2 ⊂ Ac1 . And by the compactness M̄ , there
exist c0 such that Ac0 forms a neighborhood of ∂M . Now, we will define the
Mobius charts based on these background coordinates and the standard coordi-
nate of hyperbolic space.
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In the upper half-space model, we regard hyperbolic space as the open upper
half-space

H = Hn+1 ∆
= {(x1, · · · , xn, y) ⊂ Rn+1 : y > 0}

endowed with the hyperbolic metric ğ = y−2
∑
i

(
dxi
)2
.

For any r > 0, we let Br ⊂ H denote the hyperbolic geodesic ball of radius
r about the point(x, y) = (0, 1)

Br = {(x, y) ∈ H : dğ((x, y), (0, 1)) < r}

Then
Br ⊂

{
(x, y) : |x| < sinh r, e−r < y < er

}
where |x| denotes the Euclidean norm of x ∈ Rn.

If p0 is any point in Ac0/8, choose such a background chart containing p0,
and {(θ, ρ) : |θ − θ(p0)| ≤ c0, 0 < ρ < c0} and define a map Φp0 : B2 → M,
called a Möbius chart centered at p0, by

(θ, ρ) = Φp0(x, y) = (θ0 + ρ0x, ρ0y)

where (θ0, ρ0) are the background coordinates of p0. Therefore, we see that

|θ − θ0| ≤ ρ0x ≤ ρ0 sinh(2) ≤ 4ρ0 ρ ≤ ρ0e
2 ≤ 8ρ0

Since p0 ∈ Ac0/8, ρ0 ≤ c0/8. Therefore,

Φ(B2) ⊂ {(θ, ρ) : |θ − θ(p)| ≤ c0, 0 < ρ < c0}

is still contained in the same background local coordinate.

We also choose finitely many smooth coordinate charts Φi : B2 → M such
that the sets {Φi (B2)} cover a neighborhood of M\Ac0/8,. For consistency,
we will also call these “Mobius charts.” Therefore, we have a Mobius charts
covering

{Φi(B2),Φi}Ni=1 ∪ {Φp0(B2),Φp0}p0∈Ac0/8
For simplicity, we just write is as

{Φpi(B2),Φpi}pi∈M

where Φpi(0, 1) = pi.

The following lemma shows the uniformly bounded of the Mobius coordinate.

Lemma 2.1 (Lemma 2.1 [Le2006]) There exists a constant C > 0 such that
if Φp0 : B2 →M is any y, Möbius chart,∥∥Φ∗p0g − ğ

∥∥
Cl,β(B2)

≤ C

sup
B2

∣∣∣(Φ∗p0g)−1
ğ
∣∣∣ ≤ C

8



(The Hölder and sup norms in this estimate are the usual norms applied to the
components of a tensor in coordinates; since B̄2 is compact, these are equivalent
to the intrinsic Hölder and sup norms on tensors with respect to the hyperbolic
metric.

2.2.2 Weighted Holder spaces

In this section, we will define the weighted Holder space on the asymptotically
hyperbolic manifolds by the Mobius coordinate. Most of the content of this
section is from [Le2006].

Throughout this section, we assume M̄ is a connected smooth (n + 1) -
manifold, g is a metric on M that is asymptotically hyperbolic of class Cl,β ,
with l ≥ 2 and 0 ≤ β < 1, and ρ is a fixed smooth defining function for ∂M. (It
is easy to verify that choosing another smooth defining function will replace the
norms we define below by equivalent ones, and will leave the function spaces
unchanged.)

A geometric tensor bundle over M̄ is a subbundle E of some tensor bun-
dle T r1r2 M̄ ( tensors of covariant rank r1 and contravariant rank r2) associated to
a direct summand (not necessarily irreducible) of the standard representation of

O(n+ 1) (or SO(n+ 1) if M is oriented ) on tensors of type

(
r1

r2

)
over Rn+1.

We will also use the same symbol E to denote the restriction of this bundle to
M.

Definition 2.4 (Holder space) Let (Mn+1, g) be an asymptotically hyperbolic
manifold with boundary regularity Cl,β, l ≥ 2. Let α be a real number such that
0 ≤ α < 1, and let k be a nonnegative integer such that k + α ≤ l + β. For any
tensor field u with locally Ck,α coefficients, define the norm ‖u‖k,α by

‖u‖k,α := sup
Φ
‖Φ∗u‖Ck,α(B2)

where ‖v‖Ck,α(B2) is just the usual Euclidean Hölder norm of the components
of v on B2 ⊂ H, and the supremum is over all Möbius charts defined on B2.
Let Ck,α(M ;E) be the space of sections of E for which this norm is finite. This
space is called Holder space.

Definition 2.5 (Weighted Holder spaces) The Weighted Hölder spaces
are defined for δ ∈ R by

Ck,αδ (M ;E) := ρδCk,α(M ;E) =
{
ρδu : u ∈ Ck,α(M ;E)

}
with norms

‖u‖k,α,δ :=
∥∥ρ−δu∥∥

k,α

Remark 2.2 If U ⊂ M is a subset, the restricted norms are denoted by ‖ ·
‖k,α,δ;U , and the space Ck,αδ (U ;E) are the spaces of sections over U for which
these norms are finite.
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The following lemma just show that the above Holder norm actually is equiv-
alent to the usual intrinsic Ck norm

∑
0≤i≤k supM |∇iu| for 0 ≤ k ≤ l.

Lemma 2.2 (Lemma 3.4 [Le2006]) Let (Mn+1, g) be an asymptotically hy-
perbolic manifold with boundary regularity Cl,β, l ≥ 2. Let u be a locally inte-
grable section of a tensor bundle E over an open subset U ⊂M If 0 ≤ α < 1 and
0 < k + α ≤ l + β, u ∈ Ck,αδ (U ;E) if and only if ρ−δ∇ju ∈ C0,α

(
U ;E ⊗ T jM

)
for 0 ≤ j ≤ k, and the Ck,αδ norm is equivalent to∑

0≤j≤k

sup
U

∣∣ρ−δ∇ju∣∣+
∥∥ρ−δ∇ku∥∥

0,α;U

Given a Mobius charts {Φpi(B2),Φpi}pi∈M , we will see the transition func-
tion and its derivative is uniformly bounded.

Lemma 2.3 Let (Mn+1, g) be an asymptotically hyperbolic manifold with bound-
ary regularity Cl,β, l ≥ 2. Given a Mobius charts covering {Φpi(B2),Φpi}pi∈M ,
there exists a constant C such that

‖Φ−1
pj ◦ Φpi‖Cl,β(U) ≤ C

where U = B2 − Φ−1
pi (Φpi(B2) ∩ Φpj (B2)).

Proof : The transition map can be written down as

Φ−1
pj ◦ Φpi : Φ−1

pj (Φpi(B2) ∩ Φpj (B2))→ Φ−1
pj (Φpi(B2) ∩ Φpj (B2))

x 7→ y

where x,y ∈ B2 ⊂ Hn+1. We can thought this as

Φ−1
pj ◦ Φpi : Γ(U, TM)→ Γ(U, TM)

Where Γ(U, TM) is the section of the tangent bundle on U . Then we have

Φ−1
pj ◦ Φpi =

n+1∑
t=1

∂

∂xt
⊗ dxi ∈ TM ⊗ T ∗M

Moreover
‖Φ−1

pj ◦ Φpi‖ = k + 1 and ∇Φ−1
pj ◦ Φpi = 0

By Lemma 2.2, we have

‖Φ−1
pj ◦ Φpi‖Cl,β(U) ≤ C

�
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Lemma 2.4 (Lemma 3.5 [Le2006]) Let (Mn+1, g) be an asymptotically hy-
perbolic manifold with boundary regularity Cl,β, l ≥ 2. Let u be a global section
of a tensor bundle E and u ∈ Ck,αδ (M ;E) with 0 ≤ α < 1 and 0 < k+α ≤ l+β.
Fix arbitrary 0 ≤ ε ≤ 2. Suppose that {Φpi(B2),Φpi} is a Mobius charts cover-
ing of M satisfying that

∪piΦpi(Br) = M for arbitrary ε ≤ r ≤ 2

Then we have the following norm equivalence

C−1 sup
i
ρ (pi)

−δ ‖Φ∗i u‖k,α;Br
≤ ‖u‖k,α,δ ≤ C sup

i
ρ (pi)

−δ ‖Φ∗i u‖k,α;Br
.

Proof : Then first inequality is obvious. Because the ‖.‖k,α,δ is defined in the
Mobius chart in B2. For the second inequality, we can make use of Lemma 2.2
to show it. In fact, we only need to show that

‖Φ∗piu‖Ck,α(B2) ≤ C sup
j
‖Φ∗pju‖Ck,α(Br)

Consider all the pj such that Φpi(B2)∩Φpj (Br) 6= ∅. Then from lemma 2.2, we
have

‖Φ−1
pj ◦ Φpi‖Cl,β(Uj) ≤ C

where Uj = B2 − Φ−1
pi (Φpi(B2) ∩ Φpj (Br)). Then

‖Φ∗piu‖Ck,α(B2) ≤ ‖Φ∗piu‖Ck,α(Br) + ‖Φ∗piu‖Ck,α(B2−Br)

≤ ‖Φ∗piu‖Ck,α(Br) + sup
pj

‖Φ−1
pj ◦ Φpi‖Ck,α(Uj) × ‖Φ

∗
pju‖Ck,α(Br)

�

2.3 Interior parabolic estimates

In this section, we will give the parabolic estimate in the weighted space which
is just same with the weighted holder space in previous section except there is
an extra time dimension. First, we will define the Holder norm and introduce
the local parabolic estimate. Then, we will define the weighted Holder norm in
asymptotically hyperbolic space and give the proof of the parabolic estimate in
this weighted space via Mobius chart. This idea is from [Le2006]. In [Le2006]
lemma 4.8, John Lee generalize the elliptic estimates into the weighted space by
taking the Mobius chart.

2.3.1 The general parabolic estimate

Most parts of this subsection can be found in chapter 8 of [Kr1996]. In Rn+1+1

define the parabolic distance between the points z1 = (t1, x1), z2 = (t2, x2)
as

ρ (z1, z2) = |x1 − x2|+ |t1 − t2|1/2
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Definition 2.6 (Holder Norm) If u is a function in a domain Q ⊂ Rn+1+1,
we denote

[u]α,2α;Q = sup
z1 6=z2

|u (z1)− u (z2)|
ρ2α (z1, z2)

, |u|α,2α;Q = |u|0:Q + [u]α,2α:Q

where α ∈ (0, 1
2 )

By Cα,2α(Q) we denote the space of all functions u for which |u|α,2α;Q < ∞.
We also introduce the parabolic Holder space C1+α,2+2α(Q) as the set of all
real-valued function u(z) defined in Q for which both

[u]m+α,2m+2α;Q :=
∑

|l+2k|=2m

( [
Dl∂kt u

]
0,0;Q

+
[
Dl∂kt u

]
α,2α:Q

)
<∞

|u|1+α/2,2+α;Q :=
∑

|l+2k|≤2m

( [
Dl∂kt u

]
0,0;Q

+
[
Dl∂kt u

]
α,2α:Q

)
<∞

Let Qr(p) = Br(p)× [t− r2, , t]. Then set

|u|′m+α,2m+2α;Qr =
∑

|l|+2k≤2m

r|l|+2k
(
|Dl∂kt u|0,0;Qr + r2α

[
Dl∂kt u

]
α,2α;Qr

)
where ι runs over products of spatial derivatives. Set Br = Br(0) ⊂ Rn.

Lemma 2.5 Let Qr = Br(p) × [t − r2, t] and Q2r = B2r(p) × [t − 4r2, t] and
u ∈ C1+α,2+2α (Q2r), α ∈ (0, 1

2 ) satisfying that (∂t − L)u = f where

Lu = aij(x)∂2
iju+ bi(x)∂iu+ c(x)u

such that 1
Λ < aij < Λ, |aij |′m−1+α,2m−2+2α;Q2r

< Λ, |bi|′m−1+α,2m−2+2α;Q2r
<

r−1Λ and |c(x)|′m−1+α,2m−2+2α;Q2r
< r−2Λ. Then, we have

|u|′m+α,2m+2α;Qr ≤ C(r2|f |′m−1+α,2m−2+2α;Q2r
+ |u|0,0;Q2r

)

where C depends only on Λ, m, α, n

Proof For m = 1, the Lemma is exactly the same as Theorem 8.11.1 in
[Kr1996] and for m > 1 it follows by differentiation. �

We notice that in the Lemma 2.5 we need to require that t − r2 ≥ 0 which
implies that t − r2 > 0. Therefore, the parabolic neighborhood Qr can not
be taken from the initial time. In order to make the local estimate can be
taken the initial time, we need to do an extension of the solution u(t, x) from
t ∈ [0, T ) to t ∈ (−C, T ) where C > 0. By this way, if we take t = r2, then
Qr(p, r

2) = Br(p)× [0, r2] and Q2r(p, r
2) = B2r(p)× [−3r2, r2]. Then apply the

12



above theorem at t = 0.

Next, we are going to generalized lemma 2.5 into the weighted space on
asymptotically hyperbolic space. Let M̄ be a connected smooth (n+1)-manifold,
g is a metric on M that is asymptotically hyperbolic of class Cl,β , with l ≥ 2
and 0 ≤ β ≤ 1 and ρ is a fixed smooth defining function for ∂M . Let E be a
geometric tensor bundle on M × R. Let (Φα(B2),Φα) be the Mobius covering
of M . For any tensor field u with locally Cm+α,2m+2α coefficients, define the
norm |u|m+α,2m+2α by

|u|m+α,2m+2α := sup
Φ
|Φ∗u|Cm+α,2m+2α(B2×R)

where |Φ∗u|m+α,2m+2α;B2×R is just the usual Euclidean Holder norm of the com-
ponents of u on B2 ⊂ H, and the supremum is over all Mobius charts defined
on B2. Let Cm+α,2m+2α(M ×R, E) be the space of sections of E for which this
norm is finite.

The weighted Holder space on Rn+1 × R is defined as

Cm+α,2m+2α
δ (M × R;E) :=ρδCm+α,2m+2α(M × R;E)

=
{
ρδu : u ∈ Cm+α,2m+2α(M × R;E)

}
with norm

|u|m+α,2m+2α,δ := |ρ−δu|m+α,2m+2α

Remark 2.3 If U ⊂ M × R is a subset, the restricted norms are denoted by
|.|m+α,2m+2α,δ;U and the space Cm+α,2m+2α

δ (U,E) are the spaces of section over
U for which these norms are finite.

2.3.2 The parabolic estimate on weighted space

Lemma 2.6 Let (Mn+1, g+) be an asymptotically hyperbolic manifold with C2,α

regularity. For the heat equation

∂

∂t
u = ∆L(g+)u+ f

where u is a smooth section of symmetric two tensor on M and is also a solution
of the above equation for t ∈ (η, T ]. Then, we have the following estimate

|u|m+α,2m+2α,δ;M×(η,T ] ≤ C(|f |m−1+α,2m−2+2α,δ;M×(η,T ] + |u|0,0,δ;M×(η,T ])

where C = C(g+, n,m, α, δ).

Moreover, if there is another asymptotically hyperbolic metric g satisfying
that

|g − g+|2,0,M ≤ ε

13



Then for the equation
∂

∂t
u = ∆L(g)u+ f,

its solution u also satisfies the following parabolic estimate

|u|m+α,2m+2α,δ;M×(η,T ] ≤ C(|f |m−1+α,2m−2+2α,δ;M×(η,T ] + |u|0,0,δ;M×(η,T ])

where C = C(g+, ε, n,m, α, δ, η, T ).

Proof: Take an arbitrary defining function ρ ∈ C∞(M̄) for the asymptotically
hyperbolic metric g+. We can choose a covering of a neighborhood of ∂M in M̄
by finitely many smooth coordinate charts (Ω,Θ), where each coordinate map
Θ is of the form Θ = (θ, ρ) =

(
θ1, . . . , θn, ρ

)
and extends to a neighborhood of

Ω̄ in M̄.(See section 2.2) Then take a Mobius charts covering of M based on
the above background coordinate

{Φpi(B2),Φpi}

where

Br = {(x, y) ∈ H : dǧ((x, y), (0, 1)) < r} x = (x1, · · · , xn)

and
(θ, ρ) = Φp0(x, y) = (θ0 + ρ0x, ρ0y) .

And
H = Hn+1 ,

{(
x1, · · · , xn, y

)
⊂ Rn+1 : y > 0

}
endowed with the hyperbolic metric ǧ = y−2

∑
i

(
dxi
)2

. Since

cosh(dǧ(x, y), (0, 1))) =
|x|2 + (y − 1)2

2y
+ 1

where |x|2 =
∑n
i=1(xi)2 (See detail in [JR2006]). Therefore,

Br = {(x, y) ∈ H : |x|2 + (y − cosh(r))2 ≤ cosh2(r)− 1}

Let
Ba(x0, y0)

∆
= {(x, y ∈ H) : |x− x0|2 + (y − y0)2 ≤ a2}

where x0 = (x1
0, · · · , xn0 ) and |x− x0|2 =

∑n
i=1(xi − xi0)2. Therefore,

Ba(0, 1) ⊂ B2 if 0 ≤ a ≤
√

cosh(2)− 1(
√

cosh(2) + 1−
√

cosh(2)− 1)

And

Br ⊂ Ba(0, 1) if cosh(r) ≤ (1 + a)2 + 1

2(1 + a)

Then, take a =
√

cosh(2)− 1(
√

cosh(2) + 1 −
√

cosh(2)− 1). Then, we have
two parabolic ball in B2

Qa(0, 1)
∆
= Ba(0, 1)× (t− a2, t] and Q a

2
(0, 1)

∆
= B a

2
(0, 1)× (t− a2

4
, t]

14



Moreover, by
|g − g+|2,0;M ≤ ε,

we have the coefficients of ∆L(g) is uniformly bounded and satisfies the condition
of lemma 2.5. Then we can use the lemma 2.5 in each Qa(0, 1) and Q a

2
(0, 1).

Then, by Lemma 2.4, we have the result. �

Corollary 2.1 Let (Mn+1, g+) be an asymptotically hyperbolic manifold with
regularity C2,α. Then, for corresponding curvature evolution flow of the nor-
malized Ricci flow

∂

∂t
hil = ∆Lhil − 2nhil,

we have
|h|m+α,2m+2α,δ;M×(η,T ] ≤ C(|h|0,0,δ;M×(η,T ])

where C = C(g+, ε, n,m, α, δ).

2.4 Short time existence of the curvature evolution flow
on weighted space

For the short time existence of the Ricci flow on complete Riemannian manifold,
we will quote the result of [Shi1989] [Mi2002]

Theorem 2.1 (Short time existence, Theorem 1.1 [Shi1989]) Let (M, gij(x))
be an n -dimensional complete noncompact Riemannian manifold with its Rie-
mannian curvature tensor {Rijkl} satisfying

|Rijkl|2 ≤ k0 on M

where 0 < k0 < +∞ is a constant. Then there exists a constant T (n, k0) > 0
depending only on n and k0 such that the evolution equation

∂
∂tgij(x, t) = −2Rij(x, t) on M

gij(x, 0) = gij(x) ∀x ∈M

has a smooth solution gij(x, t) > 0 for a short time 0 ≤ t ≤ T (n, k0) , and
satisfies the following estimates: For any integer m ≥ 0, there exist constants
Cm > 0 depending only on n,m and k0 such that

sup
x∈M
|∇mRijkl(x, t)|2 ≤ Cm/tm, 0 ≤ t ≤ T (n, k0)

From Theorem 2.1, we have the short time existence of the solution for the
evolution equation for the normalized Ricci flow.

Corollary 2.2 For the curvature evolution equation

∂

∂t
hil = ∆Lhil − 2nhil

15



where h(t) = Ricg(t) + ng(t). If

sup
x∈M
|h|(x, 0) ≤ ε0 and sup

x∈M
|∇h|(x, 0) ≤ ε1,

then there exists a C0 and C1 such that the solution h(x, t) obtained form The-
orem 2.1 satisfy that

sup
x∈M
‖h‖(x, t) ≤ C0ε0 and sup

x∈M
‖∇h‖(x, t) ≤ C1ε1

Proof : First, we have the following evolution equation

∂

∂t
‖h‖2 ≤ ∆‖h‖2 − 2‖∇h‖2 + C‖h‖2

Therefore, we have
∂

∂t
‖h‖2 ≤ ∆‖h‖2 + C‖h‖2

The following is the from the [LY2010], we first consider the cut-off function

ξ(y, s) = − d2
0(y)

(2 + C2ε) (t− s)

where d0(y) is the distance function from the point y to the geodesic ball
B0(x,

√
τ) with respect to the initial metric g0 and C2 is chosen so that

ξs +
1

2
‖∇ξ‖2 ≤ 0

We then set

J(s) =

∫
Mn

‖h‖2(y, s)eξ(y,s)dy

Because the curvature is bounded. By the Bishop-Gromov volume comparison
theorem, the volume is at worst exponential blow up. With this volume growth
condition and the fact that g(t) are all quasi-isometric to g0 one sees that J(s)
is finite for all 0 < s < t < T. The important observation here is that the non-
degeneracy implies the exponential decay of J(s) when it evolves. We compute

dJ

ds
(s) =

∫
2 〈∆hij − 2Ripjqhpq − 2hiphpj , hij〉 eξ

M

+ ‖h‖2eξξsdy + CεJ(s)∫
M

2(∆h)heξ + ‖h‖2eξξsdy ≤
∫
M

2
〈

∆
(

e
ξ
2h
)
,
(

e
ξ
2h
)〉

and therefore,

dJ

ds
(s) ≤ −2

∫
M

< (∆L + 2(n− 1))
(

e
ξ
2h
)
,
(

e
ξ
2h
)
> +CεJ(s)
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Since there always exists a lower bounded for the L2 spectrum of ∆L, then we
have

J(s) ≤ eλsJ(0)

where λ is the lower bounded of the spactrum of ∆L + 2(n− 1)Id. By Morser
iteration, we have

sup
B0(x,

√
τ
2 )×[t− τ2 ,t]

‖h‖2 ≤ C (n, τ, k0)

∫ t

t−τ

∫
B0(x,

√
τ)

‖h‖2(y, s)dyds

Then, we have

sup
B0(x,

√
τ
2 )×[t− τ2 ,t]

‖h‖2 ≤ Ceλt
∫
M

‖h‖2e
d20

(2+Cε)t dvg(0)

Then

sup
B0(x,

√
τ
2 )×[t− τ2 ,t]

‖h‖2 ≤ Ceλ+λ0t

∫
M

‖h‖2e−
d20

(2+Cε)t
−λ0tdvg(0)

We have

− d2
0

(2 + Cε)t
≤ −2

√
λ0

(2 + Cε)
d0.

We only need to choose enough large λ0 such that∫
M

e
−2

√
λ0

(2+Cε)
d0dVg(0) ≤ ∞

Then, we can get
sup
x∈M
‖h‖(x, t) ≤ C0ε0

Then, by the standard parabolic estimate, we have

sup
x∈M
‖∇h‖(x, t) ≤ C1ε1

�
Therefore, we have the short time existence of the curvature evolution flow.

Here, we only need to show that the solution of the curvature evolution is in the
weighted space. In order to show this, we need the following maximal principal.

Lemma 2.7 (Lemma 4.2 [QSW2013]) Suppose that (Mn+1, g(t)) is a smooth
family of complete Riemannian manifolds with boundary ∂M for t ∈ [0, T ]. Let
u be a function on M × [0, T ] which is smooth on M × (0, T ] and continuous on
M × [0, T ]. Assume that u and g(t) satisfy

17



(i) the differential inequality

∂

∂t
u−∆gtu ≤ a · ∇u+ bu

where the vector a and the function b are uniformly bounded

sup
M×[0,T ]

|a| ≤ α1, sup
M×[0,T ]

|b| ≤ α2

with some constants α1, α2 <∞

(ii)
sup
M

u(x, 0) ≤ 0

and
sup

∂M×[0,T ]

u(x, t) ≤ 0

(iii) ∫ T

0

∫
M

exp
[
−α3d

t(y, p)2
]
u2

+(y)dvt(y)dt <∞

for some positive number α3.

(iv)

sup
M×[0,T ]

∣∣∣∣ ∂∂tg(x, t)

∣∣∣∣ ≤ α4

with some constant α4 <∞.

Then we have u ≤ 0 on M × [0, T ].

Theorem 2.2 (Lemma 4.3 [QSW2013]) Suppose that g(t), t ∈ [0, T ], is a
solution of normalized Ricci flow starting from an asymptotically hyperbolic met-
ric g+ satisfying ‖Rm‖L∞ ≤ k0, ‖∇Rm‖L∞(M) ≤ k1. Then there exist numbers
C, depending on k0, k1, n, C0, and T such that

|h|0,0,δ;M ≤ CC0, |h|1,0,δ;M ≤ CC0 and [h]2,0,δ;M ≤
CC0√
t

for all t ∈ [0, T ], if
|h|1,0,δ;M ≤ C0

Proof : See Lemma 4.3 in [QSW2013]. From the appendix, for the curvature
flow

∂

∂t
hil = ∆Lhil − 2nhil

where h(t) = Ricg(t) + ng(t). Then we can get the evolution equation for the
L2 norm of h

∂

∂t
‖h‖2 ≤ ∆‖h‖2 − 2‖∇h‖2 + C‖h‖2

18



∂

∂t
‖∇h‖2 ≤ ∆‖∇h‖2 − 2

∥∥∇2h
∥∥2

+ C
(
‖h‖2 + ‖∇h‖2

)
∂

∂t

(
t
∥∥∇2h

∥∥2
)
≤∆

(
t
∥∥∇2h

∥∥2
)
− 2t

∥∥∇3h
∥∥2

+ (1 + Ct)
∥∥∇2h

∥∥2
+ C

(
‖h‖2 + ‖∇h‖2

)
Let ρ be a fixed geodesic defining function of the asymptotically hyperbolic
metric g0, one knows the fact that |∆gρ| ≤ Cρ and ‖∇gρ‖2 ≤ Cρ2. To estimate∣∣∆g(t)ρ

∣∣ and
∥∥∇g(t)ρ∥∥2

g(t)
we recall again

∂Γkij
∂t

= −gkl (Rli,j +Rlj,i −Rij,l)

and thus calculate

∂

∂t
(∆r) =

∂

∂t

(
gij
(
∇2r

)
ij

)
= 2gkigljhkl

(
∇2r

)
ij

+ gijgkl (Rli,j +Rlj,i −Rij,l)∇kr

= 2gkigljhkl
(
∇2r

)
ij

Form the fact that C−1g ≤ g(t) ≤ Cg and the property of the asymptotically
hyperbolic spaces, we get the estimates∣∣∆g(t)ρ

∣∣ ≤ Cρ and
∥∥∇g(t)r∥∥2

g(t)
≤ Cr2

We consider h̄ = ρ−γh, ∇̄h = ρ−γ∇h, ∇̄2h = ρ−γ∇2h, and ∇̄3h = ρ−γ∇3h and
calculate

∂

∂t
‖h̄‖2 ≤ ∆‖h̄‖2 − ‖∇̄h‖2 + C‖h̄‖2

∂

∂t
‖∇̄h‖2 ≤ ∆‖∇̄h‖2 −

∥∥∇̄2h
∥∥2

+ C
(
‖h̄‖2 + ‖∇̄h‖2

)
∂

∂t

(
t
∥∥∇̄2h

∥∥2
)
≤∆

(
t
∥∥∇̄2h

∥∥2
)
− t
∥∥∇̄3h

∥∥2

+ (1 + Ct)
∥∥∇̄2h

∥∥2
+ C

(
‖h̄‖2 + ‖∇̄h‖2

)
Set

ϕ1 = ‖h̄‖2 + ‖∇̄h‖2

and
ϕ2 = ‖h̄‖2 + ‖∇̄h‖2 + t

∥∥∇̄2h
∥∥2

and calculate that
∂

∂t
ϕ1 ≤ ∆ϕ1 + Cϕ1

and
∂

∂t
ϕ2 ≤ ∆ϕ2 + Cϕ2
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Therefore
∂

∂t

(
e−Ctϕ1

)
≤
(
e−Ct∆ϕ1

)
∂

∂t

(
e−Ctϕ2

)
≤
(
e−Ct∆ϕ2

)
By Lemma 2.7, we can have the result.

�

Corollary 2.3 Under the assumption of the above theorem, there also exists a
number C1, depending on k0, k1, n, C0 and T such that

|g(t)− g(0)|2,0,δ;M < C1

Proof : By the fact that g(t) =
∫ t

0
h(τ, .)dτ , we can easily get the result form

theorem 2.2. �

2.5 Semigroup and its generators

In this section, we will introduce some basic concept of the semigroup and its
generator. For more detail, refers to [Ev2010] 7.4

Definition 2.7 (Semigroup) S(t) is called the semi-group if it satisfies that

• {S(t)}t≥0 is a family of bounded linear mapping from the Banach space X
to X

• S(0) = IdX

• S(t+ s) = S(t)S(s) = S(s)S(t)

• t 7→ S(t)u is continuous from [0,∞) to X

Definition 2.8 (Generator of semigroup) Write

D(A) :=

{
u ∈ X| lim

t→0+

S(t)u− u
t

exists in X

}
and

Au := lim
t→0+

S(t)u− u
t

(u ∈ D(A))

We call A : D(A)→ X the (infinitesimal) generator of the semigroup {S(t)}t≥0;
D(A) is the domain of A.

There are some basic properties about the semigroup and its generator.

Theorem 2.3 Assume u ∈ D(A). Then

1) S(t)u ∈ D(A) for each t ≥ 0.
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2) AS(t)u = S(t)Au for each t ≥ 0.

3) The mapping t 7→ S(t)u is differentiable for each t > 0.

4) d
dtS(t)u = AS(t)u (t > 0).

Proof : See 7.4.1 Theorem 1 in [Ev2010]. �

Definition 2.9 (Resolvent set) We say a real number λ belongs to ρ(A), the
resolvent set of A, provided the operator

λI −A :→ X

is on to one and onto. And if λ ∈ ρ(A), the resolvent operator Rλ : X → X is
defined by Rλu := (λI −A)−1u

Remark 2.4 According to the Closed Graph Theorem, Rλ : X → D(A) ⊂ X
is bounded linear operator.

Theorem 2.4 (Hille-Yosida-Phillips) Let A be a closed, densely defined lin-
ear operator on X. Then A is the generator of a semigroup {S(t)}t≥0 if and
only if

(c,∞) ⊂ ρ(A) and ‖Rλ‖ ≤
1

λ− c
for λ > c

Moreover, we have ||S(t)|| ≤ e−ct

Proof : See 7.4.2 Theorem 4 in [Ev2010]. �

Now, let (Mn+1, g+) be an asymptotically hyperbolic manifold and take X =
C0,α
δ (Sym2T ∗Mn+1) with δ ∈ (0, n) and trivial L2 kernel of P on Sym2T ∗Mn+1.

By the lemma 3.7 of [Le2006], the P = ∆L+ 2nId is an isomorphism from C2,α
δ

to C0,α
δ . Then we have

||Pu||C0,α
δ
≥ c||u||C0,α

δ

where c > 0. And for c ≥ −λ, we have

||Pu+ λu||C0,α
δ
≥ (λ+ c)||u||C0,α

δ

Therefore,

(−c,∞) ⊂ ρ(A) and ‖Rλ‖ ≤
1

λ+ c
for λ > −c

Therefore, P is a generator of a semigroup S(t) with |S(t)| ≤ e−ct
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3 Long time existence

3.1 The history

The long time existence, is more complicated. For the closed manifold, we
have the result of [Ye1993] which just tell us if the pinching curvature is small
enough, then we have the long time existence and convergence of the normalized
Ricci flow. For the noncompact complete manifold, we have results of [LY2010],
[QSW2013], [SSS2010], [Ba2015] which, roughly speaking, just tell us if the
smallest L2 eigenvalue of the Lichnerowicz operator is positive, then we have the
long time existence and convergence of the Ricci flow. (Roughly speaking, this is
because that the positive smallest eigenvalue just implies the exponential decay
of the semigroup with respect to time [Hille-Yosida-Phllips]) Therefore, in order
to show the long time existence, the key is to get a precise eigenvalue estimate
of the Lichnerowicz operator. Generally, we have the following theorem,

Lemma 3.1 If for any smooth compact support function u, we have

(u,∆u) ≥ λu

with some constant λ. Then, for any smooth compact support tensor field ω, we
have

(ω,∆ω) ≥ λω

This theorem just tell us that once we have eigenvalue estimate for function,
we will have a rough eigenvalue estimate for tensor. But this is not so precise.
Actually, by the method [Bi1999] [Le2006] [Ba2015], for the symmetric spaces,
the smallest eigenvalue for tensor is always strictly bigger than the eigenvalue
for function (The difference of this two eigenvalue is the eigenvalue of Casimir
operator. See I.2 in [Bi1999]). Then, by parametrix method of Proposition 6.2
in [Le2006] and Proposition I.3.5 in [Bi1999], we have the isomorphism theorem
[Lemma 7.5 Le].

In [QSW], the reason that they did not fully recover the Lemma A in [Le]
by Ricci flow, is because that they just use the smallest eigenvalue for function
to estimate the smallest eigenvalue for symmetric two tensor. By this reason,
they need to require stronger nondegeneracy. See [Theorem 1.4 QSW]. In our
method, we just make use of the [theorem 7.5 Le] to get the exponential decay
of the semigroup and then by the argument of [Ba2015], we can fully recover
the Lemma A in [Le].

3.2 The main lemma

Let (Mn+1, g+) be an asymptotically hyperbolic space with nondegeneracy λ >
0 and regularity C2,α. From the section 2.5 and let S(t) : C0,α

δ → C0,α
δ be the
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semi group for the linear operator ∆L(g(t−l)) : C0,α
δ → C0,α

δ . Then, we have the
solution of the equation of

∂

∂t
hil = ∆L(g(t−l))hil − 2nhil +Q

can be written as

h(t, x) = S(t)(h(t− l, x)) +

∫ t−l

l

S(t− τ)Q(τ, x))dτ

Remark 3.1 Form the Hill-Yosida-Phillips theorem, for small enough ε > 0, if
|gk−1(t) − g+|C1 ≤ ε and δ ∈ (0, n − 1), then there exists 0 < λε < λ such that
|S(t)|C0,α

δ
≤ C exp(−λεt).

Theorem 3.1 Let (Mn+1, g+) be an asymptotically hyperbolic manifolds with
nondegeneracy λ > 0, regularity C2,α and ‖∇Rm‖L∞ ≤ k1. Then, for any
δ ∈ (0, n), there exists ε0(λ, k1) > 0 such that if |h|0,0,δ;M ≤ ε0, the solution of
the normalized Ricci flow g(t, x) has long time existence and g(t, x) converges
to an Einstein manifold in the sense of C2

δ norm. Moreover, the limit metric is
an Asymptotically hyperbolic Einstein metric with the same conformal infinity.

Proof of Theorem 3.1

Step 1 : (Finding the iterating inequality) The following |.| refers
to the C0,α

δ . Given a ε > 0. Let Tmax(ε) be the supreme of T such that for
arbitrary t ∈ [0, Tmax], |∇mg(t)(g(t))− g(0))|0,0,δ:M ≤ ε, where m = 0, 1, 2. Then,
for the equation,

∂

∂t
hil = ∆L(g(t−l))hil − 2nhil +Q

we have
|Q|≤C(ε)ε|h|

Then,

|h(t, x)| ≤ e−λεl|h(t− l, x)|+ C(ε)ε

∫ t

t−l
e−λε(t−τ)|h(τ, x)|dτ

let G(t, x) = max
τ∈[t−l,t]

eλετ |hK(τ, x)|. Then, we have

G(t, x) ≤ |h(t− l, x)|+ C(ε)εlG(t, x)

Therefore,

Gk(t, x) ≤ |h
K(t− l, x)|
(1− C1εl)

which implies that

|h(t, x)| ≤ e−λεl

(1− C1εl)
|h(t− l, x)|
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Step 2 : (Determine the ε and l) Consider the function f(l) = e−λεl +
C1εl−1. Then, f(0) = 0 and f ′(0) = −λε+C1ε. We see that as ε→ 0, λε → λ.
Therefore, we can take a proper ε such that f ′(0) < 0. We can also find a
positive number L1(ε) > 0 such that for arbitrary 0 < l < L1, we have f ′(l) ≤ 0
and f ′(L1) = 0.

Denote

q(s, ε)
d
= Maxs≤l≤min{Tmax(ε),L1(ε)}

eλε

1− C1εl

where s is a small positive to be determined. We see that q(s, ε) < 1 and as
s→ 0, q(s, ε)→ 1. Therefore, for arbitrary s ≤ l ≤ min{Tmax(ε), L1(ε)},

|h(t, x)| ≤ 1

q(s, ε)
|h(t− l, x)|

Now, fix an above ε and so the L1(ε) and Tmax(ε) are also fixed. There always

exists a large enough integer N such that Tmax(ε)
N < L1

Again, fix a such N . Take s = Tmax(ε)
N+1 . Then, we have q(s, ε) < 1. And for

s = Tmax(ε)
N+1 ≤ l ≤ min{Tmax(ε), L1},

|h(t, x)| ≤ 1

q(s, ε)
|h(t− l, x)|

Then, by corollary 2.1, we also have

|∇mh(t, x)| ≤ C(m, ε)

q(s, ε)
|h(t− l, x)|

Moreover, by theorem 2.2, for t ∈ [0, s], we have

|h| ≤ C(s)ε0, |∇h| ≤ C(s)ε0 and |∇2h| ≤ C(s)ε0√
t

Then, for t ∈ [ks, (k + 1)s] where k is an integer, we have

|h| ≤ C(s)

q(s, ε)k
ε0, |∇h| ≤ C(s)

q(s, ε)k
ε0 |∇2h| ≤ C(s)ε0

q(s, ε)k
√
t

Then, for arbitrary t > Tmax(ε), we can always take an integer K and

l ∈ [TmaxN+1 ,
Tmax(ε)

N ] such that Tmax(ε) < t = Kl < (K + 1)l and

|g(Kl, x)− g(0, x)| ≤
K∑
k=1

∫ ks

(k−1)s

|h(τ, x)|dτ ≤ C(s)s

1− q(s, ε)
ε0

|∇(g(Kl, x)− g(0, x))| ≤
K∑
k=1

∫ ks

(k−1)s

|∇h(τ, x)|dτ ≤ C(s)s

1− q(s, ε)
ε0
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|∇2(g(Kl, x)−g(0, x))| ≤
K∑
k=1

∫ ks

(k−1)s

|∇2h(τ, x)|dτ ≤
K∑
k=1

∫ ks

(k−1)s

C(s)ε0
q(s, ε)k

√
τ
dτ ≤ C(s)

√
s

1− q(s, ε)
ε0

we can always take ε0 > 0 small enough such that

s

1− q(s, ε)
ε0 ≤

ε

2

C(s)s

1− q(s, ε)
ε0 ≤

ε

2

C(s)s

1− q(s, ε)
ε0 ≤

ε

2

which is contradict to the choice of Tmax. Therefore, we have long time exis-
tence.

Step 3: (Convergence) Under the assumption of step 2. We will show
that for arbitrary ε1, there exists a T (ε1) such that as long as the t1, t2 ≥ T (ε1),
we have

|∇m(g(t1, x)− g(t2, x))| ≤ ε1
for m = 0, 1, 2.

For arbitrary T > 0, there exists an unique posititve integer k, such that
0 ≤ T − ks < s. By the previous discussion, we have

|h(T, x)| ≤ 1

q(s, ε)k
|h(T − ks, x)|

By theorem 2.2, for t ∈ [0, s], we have

|h| ≤ C(s)ε0, |∇h| ≤ C(s)ε0 and |∇2h| ≤ C(s)ε0√
t

Therefore,

|h(T, x)| ≤ 1

q(s, ε)k
C(s)ε0

There exists an integer K(ε1) such that if k > K(ε1), we have

1

q(s, ε)k
C(s)ε0 ≤ ε1

Therefore, as long as T ≥ (K(ε1) + 1)s, we have

|h(T, x)| ≤ ε1

For arbitrary T2 > T , let k2 be the integer such that 0 ≤ T2 − k2s < s. Then,
we have

|g(T2, x)−g(T, x)| ≤
k2+1∑
i=k

∫ is

(i−1)s

|h(τ, x)|dτ ≤
k2+1∑
i=1

1

q(s, ε)i
C(s)sε0 ≤

1

q(s, ε)k
1

1− q(s, ε)
C(s)sε0

Therefore, there exists K2 such that if T and T2 greater than (K2 +1)s, we have

|g(T2, x)− g(T, x)| ≤ ε1
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By the same way, we can get

|∇(g(T2, x)− g(T, x))| ≤ ε1

and
|∇2(g(T2, x)− g(T, x))| ≤ ε1

This implies the convergence of the normalized Ricci flow in the weighted space.
� Actually, from the proof, we see that actually the proof just give us a way to
generalized the time independent semigroup theory into time dependent semi-
group theory.

4 Stability of Asymptotically hyperbolic Einstein
manifolds

Theorem 4.1 Let (Mn+1, g+) be an asymptotically hyperbolic Einstein mani-
folds with nondegeneracy λ > 0 and regularity C2,α and (Mn+1, g) be another
asymptotically hyperbolic Einstein manifolds. Then, for any δ ∈ (0, n), there
exists ε0(λ) > 0, such that if |g − g+| ≤ ε0e

−δd(x0,x), Then the Ricci DeTurck
flow with the initial g has the long time existence and

lim
t→∞

|g − g+|0,0,δ = 0

Proof : First, the long time existence is due to lemma 3.1. In fact |g − g+| ≤
ε0e
−δd(x0,x) just implies that |Ric(g) + ng| ≤ ε0e−δd(x0,x). Now, we will show

lim
t→∞

|g − g+|0,0,δ = 0

Consider the Ricci-DeTurck flow

∂

∂t
gij = −2Rij(g(t)) +∇iWj +∇jWi − 2(n− 1)gij

where Wj = gll1gjk
(
Γkll1(g(t))− Γkll1(g+)

)
and∇ is the covariant derivative with

respect to g(t).

Let hij(t, x) = gij(t, x)− g+ij . Then the Ricci-DeTurck flow is equivalent to
the following flow

∂

∂t
hij = ∆Lhij − 2(n− 1)hij +Qij(t, x)

where ∆L is the Lichnerowicz Laplacian operator with respect to g+ and the
high order term Q is

Qij(t, x) = g ∗ g−1 ∗ g+ ∗ g−1
+ ∗ ∇h ∗ ∇h+ g ∗ g−1 ∗ g+ ∗ g−1

+ ∗ ∇2h ∗ h
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For details of the computation, see the appendix. Then, the solution of the
above Ricci DeTurck flow is

h(t, x) = S(t)(h(0, x)) +

∫ t

0

S(t− τ)Q(τ, x)dτ

By the parabolic estimate, we have

|Q|0,0,δ ≤ C(ε0)|h|0,0,δ

Therefore, we have

|h(t, x)|0,0,δ ≤ e−λε0 t|h(0, x)|0,0,δ + C(ε0)

∫ t

0

e−λε0 (t−τ)|h(τ, x)|20,0,δdτ

let G(t, x) = maxτ∈[t−l,t] e
λετ
∣∣hK(τ, x)

∣∣
0,0,δ

. Then, we have

G(t, x) ≤ |h(0, x)|+ C(ε0)|G(t, x)|2

Therefore,
|h(t, x)|0,0,δ ≤ C(ε0)e−λε0 t

Therefore, we the convergence. �

5 Perturbation existence recovered by Ricci flow

Suppose that (Mn, g) is a conformally compact Einstein manifold with the
conformal infinity (∂M, [ĝ]). Suppose that r is the geodesic defining function
associated with the conformal representative ĝ ∈ [ĝ] on ∂M. Then the metric
expansion is given as follows (cf. [FG] ):

gr = ĝ + g(2)r2 + · · ·+ g(n−3)rn−3 + hrn−1 log r + g(n−1)rn−1 + · · ·
= ĝ + g(2)r2 + · · ·+ g(k)rk + t(k)[g]

for 0 ≤ k ≤ n− 3, when n− 1 is even

gr = ĝ + g(2)r2 + · · ·+ g(n−2)rn−2 + g(n−1)rn−1 + · · ·
= ĝ + g(2)r2 + · · ·+ g(k)rk + t(k)[g]

for 0 ≤ k ≤ n− 2, when n− 1 is odd, where

• g(2i) for 2i < n− 1 are local invariants of
(
∂Mn−1, ĝ

)
• h and tr g(n−1)(n− 1 even ) are also local invariant of

(
∂Mn−1, ĝ

)
• h and g(n−1)(n− 1 odd ) are trace free

• g(n−1)(n− 1 odd ) and trace-free part of g(n−1)(n− 1 even ) are nonlocal.
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For instance,

g(2) = − 1

n− 3

(
R̂ic− R̂

2(n− 2)
ĝ

)
To construct a candidate to be the right initial metric to apply Theorem 4.6,
whose conformal infinity is a perturbation of that of a given conformally compact
Einstein metric g, we set

gk,νr = ĝν + g(2)
ν r2 + · · ·+ g(k)

ν rk + t(k)[g]

where ĝν is a perturbation of ĝ, and g
(2i)
ν = g(2i) [ĝν ] , 2i ≤ k, are corresponding

curvature terms of ĝν as given in the metric expansion in [FG]. Next let φ be a
cut-off function of the variable r such that φ = 0 when r ≥ ν2 and φ = 1 when
r ≤ ν1, where ν1 < ν2 are chosen later. We therefore have the candidate

gφk,ν = r−2
(
dr2 + (1− φ)gr + φgk,νr

)
Immediately we see that ∥∥∥gφk,ν − g∥∥∥

g
≤ C ‖ĝν − ĝ‖Ck∥∥∥Γlij

[
gφk,ν

]
− Γlij [g]

∥∥∥
g
≤ C ‖ĝν − ĝ‖Ck+1∥∥∥Rm

[
gφk,ν

]
− Rm[g]

∥∥∥
g
≤ C ‖ĝν − ĝ‖Ck+2∥∥∥∇Rm [gφk,ν]−∇Rm[g]
∥∥∥ ≤ C ‖ĝν − ĝ‖Ck+2

Theorem 5.1 Let (Mn, g) be a conformally compact Einstein manifold of reg-
ularity C2 with a smooth conformal infinity (∂M, [ĝ]). Assume that g is of
the non-degeneracy λ0. Then, if a smooth metric [ĝν ] is a sufficiently small
Ck+2−perturbation of [ĝ], then there is a C2 -conformally compact Einstein
metric on M whose conformal infinity is [ĝν ]

Proof: First of all, from the above discussion, it is clear that ĝφk,ν satisfies the
Theorem 4.6.

Theorem 5.2 Let (Mn, g) , n ≥ 5, be a conformally compact Einstein man-
ifold of regularity C2 with a smooth conformal infinity (∂M, [ĝ]). with non-
degeneracy. Then, for any smooth metric ĝν on ∂M, which is sufficiently C2,α

close to some ĝ ∈ [ĝ] for any α ∈ (0, 1), there is a conformally compact Einstein
metric gν on M which can be C2 conformally compactfied with the conformal
infinity [ĝν ].
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6 Appendix

6.1 The variation of the connection

Let ∇ and ∇̃ be the connections for the metrics g and g̃ respectively. Take
the normal coordinate with respect to g̃ at the point p0. Let {ei}ni=1 be the
coordinate frame of this normal coordinate. Then we have

∇iej − ∇̃iej =
1

2
gkl(∇̃jgli − ∇̃lgij + ∇̃iglj)

d
= Ckijek

Then
(∇i − ∇̃i)ak = Ckija

j

(∇i − ∇̃i)hjk = −Cj1ij hj1k − C
k1
ik hjk1

where ak is a covariant one order tensor and hij is a contravaiant two order
tensor.

6.2 The variation of the curvature

With the same condition of proceeding section, we have

R(ei, ej)a
k = −∇i∇jak +∇j∇iak +∇[ei,ej ]a

k = Rkijk1a
k1

Since
∇iaj = ∇̃iaj + Cjij1a

j1 ,

we have

∇i∇jak =∇̃i∇jak + Ckik1∇ja
k1 − Cj1ij∇j1a

k

=∇̃i(∇̃jak + Ckjk1a
k1) + Ckik1(∇̃jak1 + Ck1jk2a

k2)− Cj1ij (∇̃j1ak + Ckj1k1a
k1)

=∇̃i∇̃jak + (∇̃iCkjk1)ak1 + Ckjk1∇̃ia
k1 + Ckik1∇̃ja

k1 + Ckik1C
k1
jk2
ak2

− Cj1ij ∇̃j1a
k − Cj1ij C

k
j1k1a

k1 .

Similarly, we have

∇j∇iak =∇̃j∇̃iak + (∇̃jCkik1)ak1 + Ckik1∇̃ja
k1 + Ckjk1(∇̃iak1) + Ckj1C

k1
ik2
ak2

− Ci1ji ∇̃i1a
k − Ci1jiC

k
i1k1a

k1

Therefore,

R(ei, ej)a
k =−∇i∇jak +∇j∇iak

=− ∇̃i∇̃jak + ∇̃j∇̃iak + (−∇̃iCkjk1 + ∇̃jCkik1)ak1

+ (−Ckik1C
k1
jk2

+ Ckjk1C
k1
ik2

)ak2 + (Cj1ij C
k
j1k1 − C

i1
jiC

k
i1k1)ak1

=R̃(ei, ej)a
k + (−∇̃iCkjk1 + ∇̃jCkik1)ak1 + (−Ckik1C

k1
jk2

+ Ckjk1C
k1
ik2

)ak2

=Rkijk1a
k1
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Take a = akek = δkl ek = el. Then, we have

Rkijl = R̃kijl + (−∇̃iCkjl + ∇̃jCkil) + (−Ckik1C
k1
jl + Ckjk1C

k1
il )

Since

∇̃iCkjl =
1

2
gkk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l]

+
1

2
∇̃igkk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l]

and

∇̃jCkil =
1

2
gkk1 [∇̃j∇̃lgk1i − ∇̃j∇̃k1gil + ∇̃j∇̃igk1l]

+
1

2
∇̃jgkk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l],

we have

Rkijl =R̃kijl −
1

2
gkk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]−
1

2
∇̃igkk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l]

+
1

2
∇̃jgkk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l] + (−Ckik1C

k1
jl + Ckjk1C

k1
il ).

Furthermore, we have

Rkijl =R̃kijl −
1

2
g̃kk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]−
1

2
∇̃igkk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l]

+
1

2
∇̃jgkk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l] + (−Ckik1C

k1
jl + Ckjk1C

k1
il )

− 1

2
(gkk1 − g̃kk1)[∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]

Therefore, we have the Ricci curvature is

Ril =R̃il −
1

2
g̃jk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]−
1

2
∇̃igjk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l]

+
1

2
∇̃jgjk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l] + (−Cjik1C

k1
jl + Cjjk1C

k1
il )

− 1

2
(gjk1 − g̃jk1)[∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]
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Let

Q =− 1

2
∇̃igjk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l] +

1

2
∇̃jgjk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l]

+ (−Cjik1C
k1
jl + Cjjk1C

k1
il )− 1

2
(gjk1 − g̃jk1)[∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]
=g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (∇̃g) ∗ (∇̃g) + g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (g − g̃) ∗ ∇̃2g

Therefore, we have

Ril =R̃il −
1

2
g̃jk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l] +Q

And

Ril =R̃il −
1

2
∆̃gil −

1

2
∇̃i∇̃lg̃jk1gk1j −

1

2
g̃jk1(−∇̃j∇̃lgk1i − ∇̃j∇̃igk1l) +Q

Since
∇̃j∇̃lgk1i = ∇̃l∇̃jgk1i + R̃k2jlk1gk2i + R̃i1jligk1i1

∇̃j∇̃igk1l = ∇̃i∇̃jgk1l + R̃k2jik1gk2l + R̃l1jilgk1l1 ,

Ril =R̃il −
1

2
∆̃gil −

1

2
∇̃i∇̃lg̃jk1gk1j +Q

+
1

2
g̃jk1 [∇̃l∇̃jgk1i + ∇̃i∇̃jgk1l + R̃k2jlk1gk2i + R̃i1jligk1i1 + R̃k2jik1gk2l + R̃l1jilgk1l1 ]

Therefore, we have

Ril =R̃il −
1

2
[∆̃gil − R̃k2l gk2i − R̃

k2
i gk2l − 2g̃jk1R̃i1jligk1i1 ]

− 1

2
[∇̃i∇̃lg̃jk1gk1j − g̃jk1∇̃l∇̃jgk1i − g̃jk1∇̃i∇̃jgk1l] +Q

Ril =R̃il −
1

2
[∆̃gil − g̃jk1R̃ljgk1i − g̃jk1R̃ijgk1l − 2g̃jk1R̃i1jligk1i1 ]

− 1

2
[∇̃i∇̃lg̃jk1gk1j − g̃jk1∇̃l∇̃jgk1i − g̃jk1∇̃i∇̃jgk1l] +Q

Ril =R̃il −
1

2
[∆̃gil − g̃jk1R̃ljgk1i − g̃jk1R̃ijgk1l − 2g̃jk1 g̃i1i2R̃jlii2gk1i1 ]

− 1

2
[∇̃i∇̃lg̃jk1gk1j − g̃jk1∇̃l∇̃jgk1i − g̃jk1∇̃i∇̃jgk1l] +Q
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Ril =R̃il −
1

2
[∆̃gil − g̃jk1R̃ljgk1i − g̃jk1R̃ijgk1l + 2g̃jk1 g̃i1i2R̃ii2ljgk1i1 ]

− 1

2
[∇̃i∇̃lg̃jk1gk1j − g̃jk1∇̃l∇̃jgk1i − g̃jk1∇̃i∇̃jgk1l] +Q

Now, define the Lichnerowicz Laplacian as

∆̃Lgil = ∆̃gil − g̃jk1R̃ljgk1i − g̃jk1R̃ijgk1l + 2g̃jk1 g̃i1i2R̃ii2ljgk1i1

Therefore, the Ricci curvature can be written as

Ril = R̃il −
1

2
[∆̃Lgil + ∇̃i∇̃lg̃jk1gk1j − g̃jk1∇̃l∇̃jgk1i − g̃jk1∇̃i∇̃jgk1l] +Q

Moreover, let h = g − g̃. Then, we have

Ril = R̃il −
1

2
[∆̃Lhil + ∇̃i∇̃lg̃jk1hk1j − g̃jk1∇̃l∇̃jhk1i − g̃jk1∇̃i∇̃jhk1l] +Q

We call

−1

2
[∆̃Lhil + ∇̃i∇̃lg̃jk1hk1j − g̃jk1∇̃l∇̃jhk1i − g̃jk1∇̃i∇̃jhk1l]

the Linearization of Ricci curvature at g̃ and denote it as Lg̃(h)

Remark 6.1 In some textbook, the Riemannian curvature is defined as

R(ei, ej)ek = ∇i∇jek −∇j∇iek −∇[ei,ej ]ek

And Ricci curvature is defined as

Rjk =

n∑
l=1

Rlljk

where n is the dimension of the manifold. (Our definition about Ricci curvature
is Rik =

∑n
j=1R

j
ijk) Comparing with our definition, the difference of Rieman-

nian curvature is just a negative sign. And the Ricci curvature of these two
definitions are exactly same.
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Non-elliptic term : There is an non-elliptic term which is

1

2
[∇̃i∇̃lg̃jk1hk1j − g̃jk1∇̃l∇̃jhk1i − g̃jk1∇̃i∇̃jhk1l]

=
1

2
g̃jk1 [∇̃i∇̃lhk1j − ∇̃l∇̃jhk1i − ∇̃i∇̃jhk1l]

=
1

2
g̃jk1 [

1

2
(∇̃i∇̃lhk1j − 2∇̃l∇̃jhk1i) +

1

2
((∇̃i∇̃lhk1j − 2∇̃i∇̃jhk1l)]

=
1

2
g̃jk1 [

1

2
∇̃l(−∇̃jhk1i + ∇̃ihk1j − ∇̃k1hji) +

1

2
∇̃i(−∇̃jhk1l + ∇̃lhk1j − ∇̃k1hjl)]

+
1

2
g̃jk1 [R̃k2ilk1hk2j + R̃j1iljhk1j1 ]

=− 1

2
g̃jk1 [

1

2
∇̃l(∇̃jhk1i − ∇̃ihk1j + ∇̃k1hji) +

1

2
∇̃i(∇̃jhk1l − ∇̃lhk1j + ∇̃k1hjl)]

=− 1

2
g̃jk1 [g̃ii1

1

2
∇̃lg̃i1i2(∇̃jhk1i2 − ∇̃i2hk1j + ∇̃k1hji2)

+ g̃ll1
1

2
∇̃ig̃l1l2(∇̃jhk1l2 − ∇̃l2hk1j + ∇̃k1hjl2)]

=− 1

2
g̃jk1 [g̃ii1∇̃l(Γ

i1
k1j
− Γ̃i1k1j) + g̃ll1∇̃i(Γ

l1
k1j
− Γ̃l1k1j)]

Then, we have

1

2
[∇̃i∇̃lg̃jk1hk1j−g̃jk1∇̃l∇̃jhk1i−g̃jk1∇̃i∇̃jhk1l] = −1

2
g̃jk1 [g̃ii1∇̃lC

i1
k1j

+g̃ll1∇̃iC
l1
k1j

]

Now, let Vi = g̃jk1 g̃ii1C
i1
k1j

and Vl = g̃jk1 g̃ll1C
l1
k1j

. Then, we have

1

2
[∇̃i∇̃lg̃jk1hk1j − g̃jk1∇̃l∇̃jhk1i − g̃jk1∇̃i∇̃jhk1l] = −1

2
[∇̃lVi + ∇̃iVl]

Gauge term : Consider

Wi = gjk1gii1C
i1
k1j

and Wl = gjk1gll1C
l1
k1j
.

Gauge term refers to
1

2
[∇lWi +∇iWl]

Then,

1

2
[∇lWi +∇iWl]

=
1

2
[∇̃lWi + ∇̃iWl − Ci1liWi1 − C

l1
ilWl1 ]

=
1

2
[∇̃lVi + ∇̃iVl + ∇̃l(Wi − Vi) + ∇̃i(Wl − Vl)− Ci1liWi1 − C

l1
ilWl1 ]

=
1

2
[∇̃lVi + ∇̃iVl] +

1

2
[∇̃l(Wi − Vi) + ∇̃i(Wl − Vl)]−

1

2
[Ci1liWi1 + Cl1ilWl1 ]
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where

1

2
[∇̃l(Wi − Vi) + ∇̃i(Wl − Vl)]−

1

2
[Ci1liWi1 + Cl1ilWl1 ]

=
1

2
[(∇̃lgjk1)gii1C

i1
k1j

+ gjk1(∇̃lgii1)Ci1k1j + (∇̃igjk1)gll1C
l1
k1j

+ gjk1(∇̃igll1C
l1
k1j

)]

+
1

2
[(gjk1gii1 − g̃jk1 g̃ii1)∇̃lCi1k1j + (gjk1gll1 − g̃jk1 g̃ll1)∇̃iCl1k1j ]−

1

2
[Ci1liWi1 + Cl1ilWl1 ]

=
1

2
[(∇̃lgjk1)gii1C

i1
k1j

+ gjk1(∇̃lgii1)Ci1k1j + (∇̃igjk1)gll1C
l1
k1j

+
1

2
gjk1(∇̃igll1C

l1
k1j

)]

+
1

2
gjk1(gii1 − g̃ii1)∇̃lCi1k1j + (gjk1 − g̃jk1)g̃ii1∇̃lC

i1
k1j

+
1

2
gjk1(gll1 g̃ll1)∇̃iCl1k1j +

1

2
(gjk1 − g̃jk1)g̃ll1∇̃iC

l1
k1j

− 1

2
[Ci1liWi1 + Cl1ilWl1 ]

Therefore,
1

2
[∇lWi +∇iWl] =

1

2
[∇̃lVi + ∇̃iVl] +Q1

where

Q1 =
1

2
[(∇̃lgjk1)gii1C

i1
k1j

+ gjk1(∇̃lgii1)Ci1k1j + (∇̃igjk1)gll1C
l1
k1j

+
1

2
gjk1(∇̃igll1C

l1
k1j

)]

+
1

2
gjk1(gii1 − g̃ii1)∇̃lCi1k1j + (gjk1 − g̃jk1)g̃ii1∇̃lC

i1
k1j

+
1

2
gjk1(gll1 − g̃ll1)∇̃iCl1k1j +

1

2
(gjk1 − g̃jk1)g̃ll1∇̃iC

l1
k1j

− 1

2
[Ci1liWi1 + Cl1ilWl1 ]

=g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (∇̃g) ∗ (∇̃g) + g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (g − g̃) ∗ (∇̃2g)

Therefore,

Q+Q1 = g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (∇̃g) ∗ (∇̃g) + g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ (g − g̃) ∗ (∇̃2g)

Ricci-DeTurk term : Consider

Ric(g)− 1

2
[∇lWi +∇iWl]

Then,

Ric(g)− 1

2
[∇lWi +∇iWl] = Ric(g̃)− 1

2
∆̃L(g − g̃) +Q+Q1

The linearization of the gauge term at different metrics : Let ḡ be
another metrics with Christoffel symbol Γ. Then
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Wi =gjk1gii1C
i1
k1j

= gjk1gii1 [Γi1k1j − Γ̃i1k1j ] = gjk1gii1 [(Γi1k1j − Γ̄i1k1j) + (Γ̄i1k1j − Γ̃i1k1j)]

=gjk1 [∇̄jgk1i −
1

2
∇̄igk1j − ∇̄j g̃k1i +

1

2
∇̄ig̃k1j ] = g−1 ∗ (∇̄g + ∇̄g̃)

Let
V̄i = ḡjk1 ḡii1(Γ̄i1k1j − Γ̃i1k1j).

and
Vi = ḡjk1 ḡii1(Γi1k1j − Γ̄i1k1j)

Similarly, we have

Wl =gjk1gll1 [(Γl1k1j − Γ̄l1k1j) + (Γ̄l1k1j − Γ̃l1k1j)]

=gjk1 [∇̄jgk1l −
1

2
∇̄lgk1j − ∇̄j g̃k1l +

1

2
∇̄lg̃k1j ] = g−1 ∗ (∇̄g + ∇̄g̃)

And
V̄l = ḡjk1 ḡll1(Γ̄l1k1j − Γ̃l1k1j)

and
Vl = ḡjk1 ḡll1(Γl1k1j − Γ̄l1k1j)

More specifically, the gauge term can be written as

1

2
[∇lWi +∇iWl]

=
1

2
[∇̄lWi + ∇̄iWl + (∇l − ∇̄l)Wi + (∇i − ∇̄i)Wl]

=
1

2
[∇̄lVi + ∇̄iVl + (∇l − ∇̄l)Wi + (∇i − ∇̄i)Wl + ∇̄l(Wi − Vi) + ∇̄i(Wl − Vl)]

1

2
[∇̄lVi + ∇̄iVl] +

1

2
[(∇l − ∇̄l)Wi + (∇i − ∇̄i)Wl] +

1

2
[∇̄l(Wi − V̄i − Vi) + ∇̄i(Wl − V̄l − Vl)]

+
1

2
[∇̄lV̄i + ∇̄iV̄l]

where

1

2
[(∇l − ∇̄l)Wi + (∇i − ∇̄i)Wl]

=− 1

2
(Γi1li − Γ̄i1li )Wi1 −

1

2
(Γl1il − Γ̄l1il )Wl1

=− 1

4
gi1i2(∇̄lgii2 − ∇̄i2gli + ∇̄igi2l)Wi1 −

1

4
gl1l2(∇̄igll2 − ∇̄l2gil + ∇̄lgil2)Wl1

=− 1

4
gi1i2gjk1(∇̄lgii2 − ∇̄i2gli + ∇̄igi2l)(∇̄jgk1i1 −

1

2
∇̄igk1j − ∇̄j g̃k1i1 +

1

2
∇̄i1 g̃k1j)

− 1

4
gl1l2gjk1(∇̄igll2 − ∇̄l2gil + ∇̄lgil2)(∇̄jgk1l1 −

1

2
∇̄l1gk1j − ∇̄j g̃k1l1 +

1

2
∇̄l1 g̃k1j)

=g ∗ g−1 ∗ (∇̄g) ∗ (∇̄g + ∇̄g̃)
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and

∇̄l(Wi − V̄i − Vi)

=∇̄l
[
gjk1gii1 [(Γi1k1j − Γ̄i1k1j) + (Γ̄i1k1j − Γ̃i1k1j)]− ḡ

jk1 ḡii1(Γ̄i1k1j − Γ̃i1k1j)− ḡ
jk1 ḡii1(Γi1k1j − Γ̄i1k1j)

]
=∇̄l

[
gjk1gii1(Γi1k1j − Γ̄i1k1j) + gjk1gii1(Γ̄i1k1j − Γ̃i1k1j)− ḡ

jk1 ḡii1(Γ̄i1k1j − Γ̃i1k1j)− ḡ
jk1 ḡii1(Γi1k1j − Γ̄i1k1j)

]
=∇̄l

[
(gjk1 − ḡjk1)gii1(Γi1k1j − Γ̄i1k1,j ) + ḡjk1(gii1 − ḡii1)(Γi1k1j − Γ̄i1k1,j )

]
+ ∇̄l

[
(gjk1 − ḡjk1)gii1(Γ̄i1k1j − Γ̃i1k1j) + ḡjk1(gii1 − ḡii1)(Γ̄i1k1j − Γ̃i1k1j)

]
=(∇̄lgjk1)gii1(Γi1k1j − Γ̄i1k1j) + gjk1(∇̄lgii1)(Γi1k1j − Γ̄i1k1j)

+ [(gjk1 − ḡjk1)gii1 + ḡjk1(gii1 − ḡii1)]∇̄l(Γi1k1j − Γ̄i1k1,j )

+ (∇̄lgjk1)gii1(Γ̄i1k1j − Γ̃i1k1j) + gjk1(∇̄lgii1)(Γ̄i1k1j − Γ̃i1k1j)

+ [(gjk1 − ḡjk1)gii1 + ḡjk1(gii1 − ḡii1)]∇̄l(Γ̄i1k1j − Γ̃i1k1j)

=g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [(∇̄g) ∗ (∇̄g) + (g − ḡ) ∗ (∇̄2g)

+ (∇̄g) ∗ (∇̄g̃) + (g − ḡ) ∗ ∇̄2g̃ + (g − ḡ) ∗ (∇̄g̃) ∗ (∇̄g̃)]

=g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g ∗ (∇̄g + ∇̄g̃) + (g − ḡ) ∗ (∇̄2g + ∇̄2g̃ + ∇̄g̃ ∗ ∇̄g̃)]

Therefore,

∇̄l
(
Wi − V̄i − Vi

)
+ ∇̄i

(
Wl − V̄l − Vl

)
=(∇̄lgjk1)gii1(Γi1k1j − Γ̄i1k1j) + gjk1(∇̄lgii1)(Γi1k1j − Γ̄i1k1j)

+ [(gjk1 − ḡjk1)gii1 + ḡjk1(gii1 − ḡii1)]∇̄l(Γi1k1j − Γ̄i1k1,j )

+ (∇̄lgjk1)gii1(Γ̄i1k1j − Γ̃i1k1j) + gjk1(∇̄lgii1)(Γ̄i1k1j − Γ̃i1k1j)

+ [(gjk1 − ḡjk1)gll1 + ḡjk1(gll1 − ḡll1)]∇̄i(Γ̄l1k1j − Γ̃l1k1,j )

+ (∇̄igjk1)gll1(Γl1k1j − Γ̄l1k1j) + gjk1(∇̄igll1)(Γl1k1j − Γ̄l1k1j)

+ [(gjk1 − ḡjk1)gll1 + ḡjk1(gll1 − ḡll1)]∇̄i(Γl1k1j − Γ̄l1k1,j )

+ (∇̄igjk1)gll1(Γ̄l1k1j − Γ̃l1k1j) + gjk1(∇̄igll1)(Γ̄l1k1j − Γ̃l1k1j)

+ [(gjk1 − ḡjk1)gll1 + ḡjk1(gll1 − ḡll1)]∇̄i(Γ̄l1k1j − Γ̃l1k1j)

=g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g ∗ (∇̄g + ∇̄g̃) + (g − ḡ) ∗ (∇̄2g + ∇̄2g̃ + ∇̄g̃ ∗ ∇̄g̃)]

And

1

2
[∇̄lV̄i + ∇̄iV̄l] =

1

2
∇̄l[ḡjk1 ḡii1(Γ̄i1k1j − Γ̃i1k1j)] +

1

2
∇̄i[ḡjk1 ḡll1(Γ̄l1k1j − Γ̃l1k1j)]

=ḡ ∗ ḡ−1 ∗ g̃ ∗ g̃−1 ∗ ∇̄2g̃

Therefore, we have

1

2
[∇lWi +∇iWl] =

1

2

[
∇̄lVi + ∇̄iVl

]
+ g ∗ g−1 ∗ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g ∗ (∇̄g + ∇̄g̃) + (g − ḡ) ∗ (∇̄2g + ∇̄2g̃ + ∇̄g̃ ∗ ∇̄g̃) + ∇̄2g̃]
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The Linearization of Ricci-DeTurck term at different metrics : Let ḡ
be another metric. Then, the Ricci-DeTurck term can be written as

Ric(g)− 1

2
[∇lWi +∇iWl] = Ric(ḡ)− 1

2
∆̄L(g − ḡ) +Q2

where

Q2 = g∗g−1∗g̃∗g̃−1∗ḡ∗ḡ−1∗[∇̄g∗(∇̄g+∇̄g̃)+(g−ḡ)∗(∇̄2g+∇̄2g̃+∇̄g̃∗∇̄g̃)+∇̄2g̃]

Now, let h = g − ḡ and h̃ = ḡ − g̃. We have

Ric(g)− 1

2
[∇lWi +∇iWl] = Ric(ḡ)− 1

2
∆̄Lh+Q2

where

Q2 = g∗g−1∗g̃∗g̃−1∗ḡ∗ḡ−1∗[∇̄h∗(∇̄h+∇̄h̃)+h∗(∇̄2h+∇̄2h̃+∇̄h̃∗∇̄h̃)+∇̄2h̃]

6.3 The variation of Lichnerowicz Laplacian operator

Let ∆̃L and ∆̄L be the Lichnerowicz Laplacian operator for the metrics g̃ and
ḡ respectively. And let

∇̃jak − ∇̄jak = Ckjk2a
k2

and
Ckjk2 = g̃kk3(∇̄j g̃k2k3 − ∇̄k3 g̃jk2 + ∇̄k2 g̃jk3)

Then we have

(∆̃L − ∆̄L)gil =(∆̃− ∆̄)gil − [g̃jk1R̃ljgk1i − ḡjk1R̄ljgk1i]− [g̃jk1R̃ijgk1l − ḡjk1R̄ijgk1l]
+ 2[g̃jk1 g̃i1i2R̃ii2ljgk1i1 − ḡjk1 ḡi1i2R̄ii2ljgk1i1 ]

where

(∆̃− ∆̄)gil =g̃jk1∇̃j∇̃k1gil − ḡjk1∇̄j∇̄k1gil
=(g̃jk1 − ḡjk1)∇̄j∇̄k1gil + g̃jk1(∇̃j∇̃k1gil − ∇̄j∇̄k1gil)

and

g̃jk1(∇̃j∇̃k1gil − ∇̄j∇̄k1gil) =g̃jk1 [∇̄j(∇̃k1 − ∇̄k1)gil + (∇̃j − ∇̄j)∇̃k1gil
+ (∇̃j − ∇̄j)(∇̃k1 − ∇̄k1)gil + (∇̃j − ∇̄j)∇̄k1gil]

=g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [(∇̄g̃) ∗ ∇̄g̃ + ∇̄2g̃] ∗ g
+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ (∇̄g̃) ∗ (∇̄g)

+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [(∇̄g̃) ∗ (∇̄g̃)] ∗ g
+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ (∇̄g̃) ∗ ∇̄g
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Therefore,

(∆̃− ∆̄)gil =(g̃jk1 − ḡjk1)∇̄j∇̄k1gil
+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [(∇̄g̃) ∗ ∇̄g̃ + ∇̄2g̃] ∗ g
+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ (∇̄g̃) ∗ (∇̄g)

For the zero order term

g̃jk1R̃ijgk1l − ḡjk1R̄ijgk1l = (g̃jk1 − ḡjk1)R̄ijgk1l + g̃jk1(R̃ij − R̄ij)gk1l
=(g̃jk1 − ḡjk1)R̄ijgk1l + g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g̃ ∗ ∇̄g̃ + (g̃ − ḡ) ∗ ∇̄2g̃] ∗ g
=g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g̃ ∗ ∇̄g̃ + (g̃ − ḡ) ∗ (∇̄2g̃ + R̄)] ∗ g

By the same way, we can get that

g̃jk1 g̃i1i2R̃ii2ljgk1i1 − ḡjk1 ḡi1i2R̄ii2ljgk1i1
=(g̃jk1 g̃i1i2 − ḡjk1 ḡi1i2)R̄ii2ljgk1i1 + g̃jk1 g̃i1i2(R̃ii2lj − R̄ii2lj)gk1i1
=[(g̃jk1 − ḡjk1)ḡi1i2 + g̃jk1(g̃i1i2 − ḡi1i2)]R̄ii2ljgk1i1 + g̃jk1 g̃i1i2(R̃ii2lj − R̄ii2lj)gk1i1
=g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g̃ ∗ ∇̄g̃ + (g̃ − ḡ) ∗ (∇̄2g̃ + R̄)] ∗ g

Therefore, we have

(∆̃L − ∆̄L)g =g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ [∇̄g̃ ∗ ∇̄g̃ + (g̃ − ḡ) ∗ (∇̄2g̃ + R̄)] ∗ g
+ g̃ ∗ g̃−1 ∗ ḡ ∗ ḡ−1 ∗ (∇̄g̃) ∗ (∇̄g)

6.4 Curvature evolution equation

Consider the normalized Ricci flow
d

dt
g(t) = −2

(
Ricg(t) +(n− 1)g(t)

)
g(0) = g0

Let h(t) = Ricg(t) +(n − 1)g(t). We will induce the corresponding evolution
equation of h(t).

d

dt
h(t) =

d

dt
Ricg(t) +(n− 1)

d

dt
g(t)

=
d

dt
Ricg(t)−2(n− 1)h(t)
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For simplicity, we will write Ricg(t) as Ril and write the Riemannian curvature
as Rijkl. By the previous linearization of the Ricci curvature, we have

Ril =R̃il −
1

2
g̃jk1 [∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]−
1

2
∇̃igjk1 [∇̃lgk1j − ∇̃k1gjl + ∇̃jgk1l]

+
1

2
∇̃jgjk1 [∇̃lgk1i − ∇̃k1gil + ∇̃igk1l] + (−Cjik1C

k1
jl + Cjjk1C

k1
il )

− 1

2
(gjk1 − g̃jk1)[∇̃i∇̃lgk1j − ∇̃i∇̃k1gjl + ∇̃i∇̃jgk1l

− ∇̃j∇̃lgk1i + ∇̃j∇̃k1gil − ∇̃j∇̃igk1l]

Therefore,

d

dt
Ricil = −2 · 1

2
gjk1 [∇i∇lhk1j −∇i∇k1hjl +∇i∇jhk1l −∇j∇lhk1i +∇j∇k1hil −∇j∇ihk1l]

Since
∇j∇lhk1i = ∇l∇jhk1i +Rk2jlk1hk2i +Ri1jlihk1i1

∇j∇ihk1l = ∇i∇jhk1l +Rk2jik1hk2l +Rl1jilhk1l1 ,

we have

d

dt
Ricil =− (−2)

1

2
∆hil + (−2)

1

2
gjk1 [∇l∇jhk1i +∇i∇jhk1l −∇i∇lhk1j ]

+ (−2)
1

2
gjk1 [Rk2jlk1hk2i +Ri1jlihk1i1 +Rk2jik1hk2l +Rl1jilhk1l1 ]

1

2
gjk1 [∇l∇jhk1i +∇i∇jhk1l −∇i∇lhk1j ]

=
1

2
gjk1 [

1

2
∇l(∇jhk1i +∇ihk1j −∇k1hji) +

1

2
∇i(−∇jhk1l +∇lhk1j −∇k1hjl)]

By the contraction of second Bianchi identity,

gjk1(∇jRk1i +∇iRk1j −∇k1Rji) = 0

and h = Ric+ (n− 1)g, we have

d

dt
Ricil =− (−2)

1

2
∆hil + (−2)

1

2
gjk1 [Rk2jlk1hk2i +Ri1jlihk1i1 +Rk2jik1hk2l +Rl1jilhk1l1 ]

=− (−2)
1

2
[∆hil − gjk1Rljhk1i − gjk1Rijhk1l + 2gjk1gi1i2Rii2ljhk1i1 ]

=− (−2)
1

2
∆Lhil

where ∆L is the Lichnerowicz Laplacian operator defining as following

∆Lhil = ∆hil − gjk1Rljhk1i − gjk1Rijhk1l + 2gjk1gi1i2Rii2ljhk1i1
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By the fact that Rlj = hlj − (n− 1)glj , we have

d

dt
Ril = −(−2)

1

2
[∆hil − 2gjk1hljhk1i + 2(n− 1)hli + 2gjk1gi1i2Rii2ljhk1i1 ]

Therefore, we can get the curvature evolution equation, which is

d

dt
hil = ∆hil − 2gjk1hljhk1i + 2gjk1gi1i2Rii2ljhk1i1

or
d

dt
hil = ∆Lhil − 2(n− 1)hil

In particularly, for normalized Einstein manifold with negative Ricci curvature,
we have

Rij = −(n− 1)gij

Therefore,

∆Lhil = ∆hil + 2(n− 1)hil + 2gjk1gi1i2Rii2ljhk1i1

Moreover, for the hyperbolic space with the sectional curvature equal to −1, we
have

Rii2lj = −(gilgi2j − gijgi2l)

Then, we have

∆Lhil =∆hil + 2(n− 1)hil + 2gjk1gi1i2Rii2ljhk1i1 = ∆hil + 2(n− 1)hil + 2hil

=∆hil + 2nhil
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